Nom :		

CONTROLE N°4 TERMINALE SPECIALITE MATHEMATIQUES DUREE 2H

Exercice 1 (4 pts)

Soit la suite (U_n) définie par $U_n = 2 + \frac{1}{3n+1}$

- 1°) Calculer U₀, U₁ et U₂
- 2°) a) Vérifier que $U_{n+1} = 2 + \frac{1}{3n+4}$ b) Montrer alors que $U_{n+1} U_n = \frac{-3}{(3n+4)(3n+1)}$
- c) En déduire la monotonie de la suite.
- 3°) Sachant que $U_n 2 = \frac{1}{3n+1}$, montrer que (U_n) est minorée par 2.
- 4°) En déduire que la suite est convergente sans utiliser les propriétés sur les opérations des limites.(On ne demande pas de calculer la limite)

Exercice 2 (4 pts)

Déterminer la limite des suites suivantes :

1°)(U_n) est la suite définie par $U_n = 3n^2 + n + 30000$

2°)(V_n) est la suite définie par V_n =
$$6 - \frac{1}{\sqrt{n}} + \frac{2}{n^3}$$

3°) (T_n) est la suite définie par T_n = $2 - \frac{10}{4^n}$

3°) (T_n) est la suite définie par T_n =
$$2 - \frac{10}{4^n}$$

Exercice 3 (2 pts)

- On considère la suite (U_n) définie par U_n = $5 + \frac{sin(4n+2)}{n^3+1}$ 1°) Montrer que pour tout n de N : $5 \frac{1}{n^3+1} \le U_n \le 5 + \frac{1}{n^3+1}$
- 2°) A l'aide du 1°) déterminer la limite de (Un).

Exercice 4 (5 pts)

On considère la suite (U_n) définie par U_0 = 10 000 et pour tout entier naturel n:

$$U_{n+1}$$
=0,95 U_n +200.

- 1. Calculer U_1 et vérifier que U_2 =9415.
- 2.a. Démontrer, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n :

$$U_n > 4000$$

- b. On admet que la suite (U_n) est décroissante. Justifier qu'elle converge.
- 3. Pour tout entier naturel n, on considère la suite (V_n) définie par : $V_n = U_n 4000$.
- a. Calculer V_0 .
- b. Démontrer que la suite (V_n) est géométrique de raison égale à 0,95.
- c. En déduire que pour tout entier naturel n: $U_n = 4000 + 6000 \times 0,95^n$.
- d. Quelle est la limite de la suite (U_n) ? Justifier la réponse.
- 4.En 2020, une espèce animale comptait 10 000 individus. L'évolution observée les années précédentes conduit à estimer qu'à partir de l'année 2021, cette population baissera de 5 % chaque début d'année.

Pour ralentir cette baisse, il a été décidé de réintroduire 200 individus à la fin de chaque année, à partir de 2021. Une responsable d'une association soutenant cette stratégie affirme que : « l'espèce ne devrait pas s'éteindre, mais malheureusement, nous n'empêcherons pas une disparition de plus de la moitié de la population ».

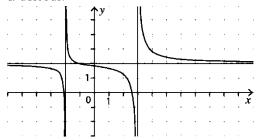
Que pensez-vous de cette affirmation ? Justifier la réponse.

Exercice 5 (5 pts)

1°) QCM: Entourer la réponse juste. (2 pts)

- 1 Lorsque x tend vers $+\infty$, la limite de $f(x) = \frac{2}{x} \frac{3}{x}$ est :
 - a 1.
 - b une forme indéterminée.
 - c 0.
- 2 La limite de $g(x) = x^3 2x^2 + 3x 1$ lorsque x tend vers -∞ est égale à :
 - a +∞
- **b** -∞
- c 0
- Si $\lim_{x \to +\infty} f(x) = +\infty$, alors $\lim_{x \to +\infty} (f(x) x)$ est:
 - a +∞.
 - b une forme indéterminée.
 - c 0.
- O Lorsque x tend vers $+\infty$, la limite de $h(x) = \frac{x+1}{x-1}$ est :
 - a 1.
 - b +∞.
 - c une forme indéterminée.
- Solution Lorsque x tend vers -1 avec x < -1, la limite de $f(x) = \frac{2x 3}{x + 1}$ est :
 - a 2
- h +∞
- c -0

- 6 La limite de $f(x) = \cos(\frac{x^2 10}{2x^4 + 7x + 2})$ en $+\infty$:
 - a Une forme indéterminée
 - $b \infty$
 - c 1
- **1** La fonction f est donnée par la courbe ci-dessous.



- a La droite d'équation x = 2 est asymptote à la courbe représentative de f.
- b La droite d'équation y = 3 est asymptote à la courbe représentative de f.
- c La droite d'équation x = 3 est asymptote à la courbe représentative de f.
- 2°) Vrai /Faux : Répondre par vrai ou faux et justifier votre réponse. (3 pts)
- 1- Soit f une fonction définie sur \mathbb{R} . Affirmation : Si, pour tout réel $x \ge 0$, $\sqrt{x} \le f(x)$, alors $\lim_{x \to +\infty} f(x) = +\infty$.
- 2- Soit a un nombre réel. Soient g une fonction telle que $\lim_{x \to a} g(x) = +\infty$ et h une fonction telle que $\lim_{x \to a} h(x) = +\infty$.
 - Affirmation: On a $\lim_{x \to a} \frac{g(x)}{h(x)} = 0$.

3- La fonction f, définie sur]0; $+\infty[$ par :

$$f(x) = -5 + \frac{1}{x} + \cos(x)$$

est encadrée par les fonctions $g(x) = -6 + \frac{1}{x}$ et $h(x) = -4 + \frac{1}{x}$.

Affirmation:
$$\lim_{x \to +\infty} f(x) = -5$$