NOM:

A REMETTRE AVEC LA COPIE

CONTROLE N°2 DE MATHS 1 H T SPE SA

Exercice 1 (6 points)

Dans les questions suivantes entourer la solution exacte parmi celles proposées.

$$1 - \lim_{n \to +\infty} \quad - \quad \frac{193}{5n} + \quad \frac{1}{4n^2} + 9$$

-193 + ∞ 0 9

2 -
$$\lim_{n \to +\infty}$$
 10 - $4\sqrt{n}$ + $\frac{30}{n}$

 $-\infty$ $+\infty$ 10 \sqrt{n}

$$16n^3 + n + 20n^2$$

 $\frac{3 - \lim_{n \to +\infty} \frac{1}{n^2 + 4n^3 + 2022}}{n^2 + 4n^3 + 2022}$

0 + \infty 4 20

$$4 - \lim_{n \to +\infty} -100n^3 + \frac{1}{n} + \frac{19}{n^5} + n^6$$

- ∞ + ∞ -100 0

$$5 - \lim_{n \to +\infty} n + 6n^2 - 9n^8 + 200$$

- ∞ + ∞ -3 197

- ∞ 13 1 0

7- Pour tout n de N*, $n+5 \le U_n \le 2n^2 + 5$ donc $\lim_{n \to +\infty} U_n =$

 $-\infty$ $+\infty$ n+5 5

Exercice 2 (7 points)

1°) Soit la suite (U_n) définie par $U_n = n^3 + 4n^2 + 4$. Déterminer la limite de (U_n)

2°) Soit la suite (V_n) définie par $V_n = \frac{n^4 - 3n}{2n^2 + 7}$. Déterminer la limite de (V_n) .

 3°) Soit la suite (W_n) définie par $W_n = 10^n - 13^n$. Déterminer la limite de (W_n)

4°) Soit la suite (T_n) définie par $T_n = \frac{3\sin(n)+2}{n} - 4$

a) Montrer que pour tout entier naturel n non nul : $\frac{-1}{n} - 4 \le \frac{3\sin(n) + 2}{n} - 4 \le \frac{5}{n} - 4$

Exercice 3 (7 points)

On considère la suite (U_n) définie par $U_0 = 1\;$ et pour tout entier naturel n ,

$$U_{n+1} = \frac{4}{5} \sqrt{U_n} + \frac{12}{5}$$

Montrer par récurrence que pour tout entier naturel n, $0 < U_n < 4$

Bonus : Montrer que la suite $U_n = \frac{7n+9}{2n+3}$ est minorée par 3 .