CONTROLE DU 13/11/18 CORRIGE

EXERCICE 1

Partie 1

1. Limites en l'infini

En $+\infty$

On a une forme indéterminée en $+\infty$.

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^3 \left(1 - \frac{12}{x^2} + \frac{17}{x^3}\right)$$

Or
$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$
 et $\lim_{x \to +\infty} \frac{1}{x^3} = 0$ soit par somme $\lim_{x \to +\infty} 1 - \frac{12}{x^2} + \frac{17}{x^3} = 1$ Soit finalement par produit de limites
$$\lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to +\infty} g(x) = +\infty$$

$En - \infty$

On a aussi une indéterminée en -∞ donc en procédant de la même manière qu'en +∞ on montre que

$$\lim_{x\to-\infty}g(x)=-\infty$$

2.g est une fonction polynôme, elle est donc dérivable sur R.

 $g'(x) = 3x^2 - 12 = 3(x^2 - 4) = 3(x - 2)(x + 2)$. D'après la règle sur le signe du trinôme du second degré on en déduit le signe de g'(x) et le tableau de variation de g sur R:

х	-∞	-2	2	+∞
g'(x)	+	o -	0 -	F
g(x)		33	1	+ ∞

3. La fonction g est continue et strictement croissante de l'intervalle $]-\infty$; -2 [à valeurs dans l'intervalle $]-\infty$; 33 [qui contient 0, donc d'après le corollaire du théorème des valeurs intermédiaires relatif aux fonctions strictement monotones l'équation g(x) = 0 admet une unique solution α dans $]-\infty$; -2 [.

De plus, d'après le tableau de variation obtenu au 2°), on a g > 0 sur l'intervalle]2;+ ∞ [puisque le minimum de g sur cet intervalle est 1 atteint en 2.

On en déduit donc finalement que l'équation g(x) = 0 admet une unique solution α dans R.

- 4. Comme g (-4,02) \approx -0. et que g (-4,03) = 0. donc g (-4,02)× g (-4,03) on en déduit que -4,03 < α < -4,02.
- 5. On en déduit le signe de g sur R

X	-∞	α	+∞
g(x)	-	0 +	

Partie B

1. a) Limites en l'infini

En $+\infty$

On a une forme indéterminée en $+\infty$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3 \left(2 - \frac{17}{x^3}\right)}{x^2 \left(1 - \frac{4}{x^2}\right)} = \lim_{x \to +\infty} \frac{x \left(1 - \frac{17}{x^3}\right)}{1 - \frac{4}{x^2}}$$

Or
$$\lim_{x \to +\infty} \frac{17}{x^3} = 0$$
 soit par somme $\lim_{x \to +\infty} 1 - \frac{17}{x^3} = 1$ Donc par produit de limites
$$\lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$
 soit encore $\lim_{x \to +\infty} 1 - \frac{4}{x^2} = 1$

$En - \infty$

On a aussi une indéterminée en -\infty donc en procédant de la même manière qu'en +\infty on montre que

$$\lim_{x\to-\infty}f(x)=-\infty$$

b) En 2

$$\lim_{\substack{x \to 2 \\ x > 2}} 2x^3 - 17 = -1$$
Donc par quotient des limites
$$\lim_{\substack{x \to 2 \\ x > 2}} x^2 - 4 = 0^+$$

$$\lim_{\substack{x \to 2 \\ x > 2}} f(x) = -\infty$$

$$\lim_{\substack{x \to 2 \\ x < 2}} 2x^3 - 17 = -1$$
Donc par quoties
$$\lim_{\substack{x \to 2 \\ x < 2}} x^2 - 4 = 0$$

$$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = +\infty$$

Donc par quotient des limites

$$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = +\infty$$

<u>En -2</u>

$$\lim_{\substack{x \to -2 \\ x > -2}} 2x^3 - 1 = -17$$
Donc par quotient
$$\lim_{\substack{x \to -2 \\ x > -2}} x^2 - 4 = 0$$

$$\lim_{\substack{x \to -2 \\ x > -2}} f(x) = +\infty$$

Donc par quotient des limites

$$\lim_{\substack{x \to -2 \\ x > -2}} f(x) = +\infty$$

$$\lim_{\substack{x \to -2 \\ x < -2}} 2x^3 - 1 = -17$$
Donc par quotient of
$$\lim_{\substack{x \to -2 \\ x < -2}} x^2 - 4 = 0^+$$

$$\lim_{\substack{x \to -2 \\ x < -2}} f(x) = -\infty$$

Donc par quotient des limites

$$\lim_{\substack{x \to -2 \\ x < -2}} f(x) = -\infty$$

 $\lim_{\substack{x \to 2 \\ x > 2}} f(x) = +\infty \quad \text{et } \lim_{\substack{x \to 2 \\ x < 2}} f(x) = -\infty \quad \text{alors la droite d'équation } x = 2 \text{ est}$ asymptote verticale à C De même la droite d'équation x = -2 est asymptote verticale à C

2.La fonction f qui est une fonction rationnelle est dérivable sur son ensemble de définition

$$f'(x) = \frac{6x^2(x^2-4)-(2x^3-1)\cdot 2x}{(x^2-4)^2} = \frac{6x^4-24x^2-4x^4+2x}{(x^2-4)^2} = \frac{2x^4-24x^2+2x}{(x^2-4)^2} = \frac{2x(x^3-12x+1)}{(x^2-4)^2} = \frac{2xg(x)}{(x^2-4)^2}$$

3.
$$f(\alpha) = \frac{2\alpha^3 - 17}{\alpha^2 - 4}$$
 Or $g(\alpha) = 0$ soit $\alpha^3 = 12\alpha - 17$ et $\alpha^2 - 4 = \frac{8\alpha - 17}{\alpha}$ donc

$$f(\alpha) = \alpha \frac{24\alpha - 51}{8\alpha - 17} = 3\alpha.$$

4.D'après 2. $f'(x) = \frac{2xg(x)}{(x^2-4)^2}$ or $(x^2-4)^2 > 0$ pour tout x de $\mathbb{R}\setminus\{-2;2\}$ on en déduit que

f'(x) est du signe de xg(x) sur R\{-2;2\}. On étudie le signe de f'(x):

X	-∞ α -	-2 0	2	+∞
х		- 0 +	+	
g(x)	- 0 +	+ -	+ +	
f'(x)	+ 0 -	- 0 +	+	

On a donc le tableau de variation de f

х	-∞	α -2	2. (0	2 +∞
f'(x)	+	0 -	- () +	+
f(x)	∞	a	+∞	+∞ 17/4	+∞

5. Les abscisses des points de C où la tangente est parallèle à la droite d'équation y = 2x vérifient l'équation f'(x) = 2 où x dans $R \setminus \{-2; 2\}$ c'est-à-dire l'équation:

$$\frac{2x^4 - 24x^2 + 34x}{(x^2 - 4)^2} = 2 \quad \text{soit encore} \quad 2x^4 - 24x^2 + 34x = 2x^4 - 16x^2 + 32$$

$$-8x^2 + 34x - 32 = 0$$

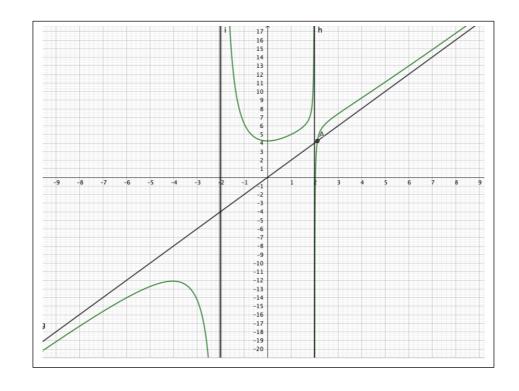
Qui équivaut finalement à $4x^2 - 17x + 16 = 0$

$$\Delta = 33^2$$
 $x = \frac{17 + \sqrt{33}}{8}$ ou $x = \frac{17 - \sqrt{33}}{8}$

Les coordonnées des points cherchés sont donc $(\frac{17-\sqrt{33}}{8}; \frac{51-\sqrt{33}}{8})$ et $(\frac{17+\sqrt{33}}{8}; \frac{51+\sqrt{33}}{8})$

Partie C

1.2. Il semble que la courbe C est au-dessus de D sur] -2 ;2[U [2,1; $+\infty$ [et que C est en-dessous de D sur] - ∞ ;-2[U] 2 ; 2,1].



3. Pour étudier la position relative de \mathscr{E} et T il faut et il suffit d'étudier le signe de h(x) = f(x) - 2x

$$h(x) = \frac{8x-17}{x^2-4}$$

X	-∞ -	-2 2	$\frac{17}{8}$	+∞
x	-	-	- 0	+
g(x)	+	-	+	+
f'(x)	-	+	- 0	+

on en déduit donc que C au- dessus de D sur] -2 ;2[U [$\frac{17}{8}$; $+\infty$ [et en – dessous de D sur] - ∞ ;-2[U] 2 ; $\frac{17}{8}$]

Exercice 2 (corrigé non détaillé)

1°) On montre d'abord que $\lim_{x\to +\infty} \frac{4x+3}{5x^2+x+2} = 0$ puis on utilise la composée des limites Pour prouver que $\lim_{x\to +\infty} f(x) = 0$

2°)
$$\lim_{x \to +\infty} f(x) = -3$$
 $\lim_{x \to +\infty} g(x) = 0$ $\lim_{x \to +\infty} h(x) = -3$

$$\lim_{\substack{x \to 3 \\ x > 3}} f(x) = -\infty \qquad \qquad \lim_{x \to 3} g(x) = +\infty \qquad \qquad \lim_{x \to 3} h(x) = +\infty$$

$$\lim_{\substack{x\to 3\\x<3}} f(x) = +\infty$$

3°) On montre que, comme (attention!) x + 4 < 0 si x tend vers $-\infty$

$$\frac{3x^2}{x+4} \leq \frac{-3\cos x + 3x^2 - 3}{x+4} \leq \frac{3x^2 - 6}{x+4}$$

Puis que $\lim_{x \to -\infty} \frac{3x^2 - 6}{x + 4} = -\infty$ donc en utilisant le théorème de comparaison des limites et par majoration on a $\lim_{x \to -\infty} f(x) = -\infty$

EXERCICE 3

1. a. À l'aide d'une calculatrice, on obtient les valeurs suivantes :

n	0	1	2	3	4	5	6	7	8
u_n	2	3,4	2,18	1,19	0,61	0,31	0,16	0,08	0,04

- **b.** Au vu du tableau précédent, on peut conjecturer que la suite (u_n) est décroissante à partir du rang 1.
- **2. a.** Soit $\mathcal{P}(n)$ la propriété : « $u_n \geqslant \frac{15}{4} \times 0.5^n$ ». Montrons par récurrence que $\mathcal{P}(n)$ est vraie pour tout entier naturel n non nul.
 - Initialisation. On a $u_1 = 3.4$ et $\frac{15}{4} \times 0.5 = 1.875$, donc $\mathcal{P}(1)$ est vraie.
- **Hérédité.** Soit n entier naturel non nul, et $\mathcal{P}(n)$ vraie, c'est-à-dire que :

(HR)
$$u_n \geqslant \frac{15}{4} \times 0.5^k$$

on doit alors démontrer que la propriété $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $u_{n+1}\geqslant \frac{15}{4}\times 0,5^{n+1}$.

D'après (HR):

$$u_n \geqslant \frac{15}{4} \times 0,5^n \quad \text{donc, en multipliant par } \frac{1}{5}:$$

$$\frac{1}{5}u_n \geqslant \frac{3}{4} \times 0,5^n \quad \text{puis, en ajoutant membre à membre } 3 \times 0,5^n:$$

$$\frac{1}{5}u_n + 3 \times 0,5^n \geqslant \frac{3}{4} \times 0,5^n + 3 \times 0,5^n \quad \text{c'est-à-dire:}$$

$$u_{n+1} \geqslant \frac{15}{4} \times 0,5^n$$

Or, pour tout entier naturel n, $0.5^n \ge 0.5^{n+1}$, on en déduit donc que :

$$u_{n+1}\geqslant \frac{15}{4}\times 0.5^{n+1}$$

et la propriété $\mathcal{P}(n)$ est donc héréditaire.

La propriété est vraie 1 et si elle est vraie à un rang non nul, n elle est vraie au range suivant n+1.

On a donc démontré par le principe de récurrence que pour tout naturel non nul $u_n \ge \frac{15}{4} \times 0.5^n$.

- Conclusion. La propriété $\mathcal{P}(n)$ est initialisée et héréditaire, elle est donc vraie pour tout entier naturel n non nul.
- **b.** Pour tout entier naturel *n* non nul:

$$u_{n+1} - u_n = \frac{1}{5}u_n + 3 \times 0.5^n - u_n$$
$$= 3 \times 0.5^n - \frac{4}{5}u_n$$
$$= \frac{4}{5} \left(\frac{15}{4} \times 0.5^n - u_n\right)$$

D'après la question 1a, cela entraı̂ne que $u_{n+1} - u_n \le 0$.

c. D'après la question précédente la suite (u_n) est décroissante à partir d'un certain rang. D'après 2a, pour tout entier naturel n non nul, $u_n \geqslant \frac{15}{4} \times 0.5^n > 0$, la suite est donc minorée. On en déduit, d'après le théorème de convergence des suites monotones, que la suite (u_n) est convergente.

3. a. Soit $n \in \mathbb{N}$, alors :

$$v_{n+1} = u_{n+1} - 10 \times 0.5^{n+1}$$

$$= \frac{1}{5}u_n + 3 \times 0.5^n - 10 \times 0.5 \times 0.5^n$$

$$= \frac{1}{5}u_n - 2 \times 0.5^n$$

$$= \frac{1}{5}(u_n - 10 \times 0.5^n)$$

$$= \frac{1}{5}v_n.$$

La suite (v_n) est donc géométrique de raison $\frac{1}{5}$. Son premier terme vaut $v_0 = u_0 - 10 \times 0,5^0 = 2 - 10 = -8$.

- **b.** La suite (v_n) étant géométrique, on a, pour tout entier naturel $n: v_n = -8\left(\frac{1}{5}\right)^n$. On en déduit que $-8 \times \left(\frac{1}{5}\right)^n = u_n 10 \times 0,5^n$ et donc que $: u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0,5^n$.
- **c.** $-1 < \frac{1}{5} < 1$, donc $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$, de même : -1 < 0.5 < 1, donc $\lim_{n \to +\infty} 0.5^n = 0$. On en déduit par opérations sur les limites que $\lim_{n \to +\infty} u_n = 0$.
- 4. L'algorithme complet est :

n et u sont des nombres n prend la valeur 0 u prend la valeur 2 Tant que u > 0.01 n prend la valeur n+1 u prend la valeur $\frac{1}{5}u+3\times0.5^{n-1}$ Fin Tant que Afficher n