CONTROLE DE MATHEMATIQUES N°1 : TS LE 12/10/18 DUREE 2H LE SUJET EST A REMETTRE AVEC LA COPIE

Exercice 1 (6 points)

Partie A

Résoudre dans R les équations et inéquations suivantes :

1°)
$$x^2 + 6x - 7 = 0$$

$$2^{\circ}$$
) $x^2 + x + 4 > 0$

$$3^{\circ}$$
) - $3x^2 - 2x + 1 \ge 0$

Partie B

Résoudre dans R:

$$\frac{x^2 - x - 6}{x^2 + 6x - 7} < 0$$

Exercice 2 (8 points)

Soit f la fonction définie sur l'intervalle I = [0; 3] par f(x) = $\frac{4x+3}{x+2}$

On définit pour tout entier naturel n la suite (Un) par

$$\begin{cases} U_0 = 0 \\ U_{n+1} = f(U_n) \end{cases}$$

- 1°) a) Dresser le tableau de variation de f puis en déduire que $f(x) \in I$.
- b) Sur le graphique donné en annexe, placer les points A_0 , A_1 , A_2 , A_3 , d'ordonnée nulle et d'abscisses respectives U_0 , U_1 , U_2 , U_3 .

D'après le graphique quel semble être le sens de variation de la suite et que peut-on dire à propos de la convergence de (U_n) ?

- 2°) a) Démontrer par récurrence que pour tout entier naturel n, $U_n \in I$.
- b) Etablir la relation $U_{n+1}-U_n=\frac{(U_n+1)(3-U_n)}{U_n+2}$ et en déduire le sens de variation de (U_n) .
 - 3°) On considère la suite (V_n) définie sur N par $V_n = \frac{U_n 3}{U_n + 1}$
 - a) Calculer V_0 , V_1 et V_2 .
 - b) Montrer que la suite (V_n) est une suite géométrique dont on déterminera la raison et le premier terme. En déduire l'expression de V_n en fonction de n.

1

- c) Montrer que $U_n = \frac{V_n + 3}{1 V_n}$ puis exprimer U_n en fonction de n.
- d) En déduire la limite de la suite (U_n).

Exercice 3(6 points)

- 1°) Déterminer $\lim_{n\to+\infty} 5^n 4^n$
- 2°) Déterminer la limite de la suite U_n = 3cos n 2n + 6 . (on pensera à d'abord encadrer U_n)
- 3°) On considère la suite (U_n) , une suite géométrique de raison $\frac{1}{3}$ et de premier terme $U_0=4$.
- a) Exprimer U_n en fonction de n puis déterminer $\lim_{n\to+\infty} U_n$.
- b) Soit $S_n = U_0 + ... + U_n$. Montrer que $S_n = 6(1 (\frac{1}{3})^n)$. En déduire $\lim_{n \to +\infty} S_n$.

ANNEXE

