1°) Limite finie

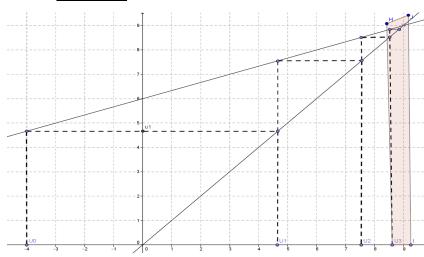
On définit la suite
$$(U_n)$$
 par
$$\begin{bmatrix} U_0 = -4 \\ U_{n+1} = \frac{1}{3}U_n + 6 \end{bmatrix}$$

Grâce à la calculatrice on a $U_1 = 4.66 U_2 = 7.54$

$$U_3 = 8.57 \ U4 = 8.84$$

$$U_{21} = 8.99$$

Observation



On voit clairement sur le schéma ci—contre que les valeurs de (Un) « s'agglutinent » de plus en plus dans la zone grisée .Dès que n>4 elles se rapprochent du point fixe qui est l'abscisse du point d'intersection de la droite y=x et de la courbe y=f(x) à savoir Xo = 9.

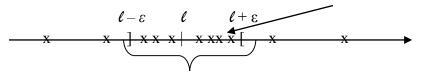
On dira que la valeur 9 est la limite de la suite (U_n) quand n tend vers $+\infty$ et on écrit

$$\lim_{n \to +\infty} U_n = 9$$

Définition

Dire qu'une suite (U_n) a pour limite un nombre réel ℓ signifie que tout intervalle ouvert I contenant ℓ contient tous les termes de la suite à partir d'un certain rang N. On dit que la suite (U_n) converge vers le réel ℓ .

Les termes s'accumulent autour de ℓ



Tous les termes U_n à partir d'un indice N sont dans un intervalle I.

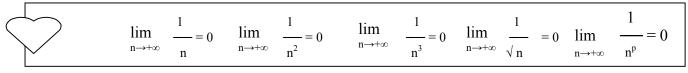
$$\lim_{n \to \ell} U_n = \ell$$

Remarque:

Pour tout
$$n \ge N$$
 $U_n \in]l - \varepsilon; l + \varepsilon[$

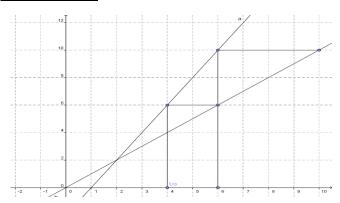
(ou
$$| U_n - l | \le \varepsilon$$
)

SUITES DE REFERENCE



Propriété: Si la suite (Un) converge alors sa limite est unique

2°) Limite infinie



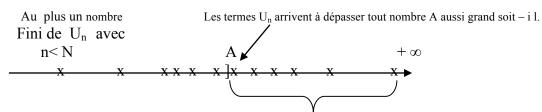
On voit clairement sur le schéma cicontre que les valeurs de (Un) deviennent de plus en plus grandes

On dira que la suite (U_n) tend vers $+\infty$ quand n tend vers $+\infty$ et on écrit

$$\lim_{n\to +\infty} U_n = +\infty$$

Définition

Dire qu'une suite (U_n) a pour limite $+\infty$ (resp. $-\infty$) signifie que tout intervalle ouvert de la forme]A; $+\infty[$ ($]-\infty$; A[) contient tous les termes de la suite (U_n) à partir d'un certain rang.



Tous les termes Un à partir d'un indice N

On écrit

$$\lim_{n \to +\infty} U_n = +\infty \qquad (resp -\infty)$$

On dit que la suite (U_n) diverge vers $+\infty$ (ou vers $-\infty$)

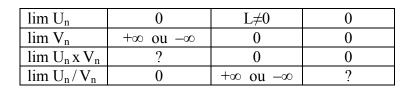
Remarque : une suite qui n'a pas de limite est aussi divergente.

SUITES DE REFERENCE

$n = +\infty$	$\lim n^2 = +\infty$	$\lim_{n \to \infty} n^3 = +\infty$	$\lim_{n \to \infty} \sqrt{n} = +\infty$	$\lim_{n \to \infty} n^{P} = +\infty$
IIIII II II	11111 11 11	IIIII 11	IIIII , II	11111 11 1-1-1
$n \rightarrow +\infty$	$n \rightarrow +\infty$	$n \rightarrow +\infty$	$n \rightarrow +\infty$	$n \to +\infty$

c)Opérations et limites

lim U _n	L	$+\infty$	$+\infty$		L	L
lim V _n	L'	∞ +	$-\infty$		$+\infty$	- ∞
$\lim U_{n+}V_{n}$	L + L'	$+\infty$?	-∞	$+\infty$	- ∞
$\lim U_n x V_n$	LL'	$+\infty$		+∞	$Signe(L)\infty$	-signe(L)∞
$\lim U_n/V_n$	L/L'	?	?	?	0	0



3°) Calculs d'une limite de suite

a) Suites géométriques

*Si | q| < 1 alors
$$\lim_{n \to +\infty} q^n = 0$$

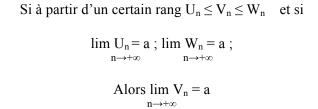
*Si $q = 1$ alors $\lim_{n \to +\infty} q^n = 1$
*Si $q > 1$ alors $\lim_{n \to +\infty} q^n = +\infty$

* Si $q \le -1$ alors (q^n) n'admet pas de limite

Demonstrations exigibles voir livre p 24

b) Comparaison

POUR LES LIMITES FINIES : Théorème des gendarmes (admis)



*Si à partir d'un certain rang $U_n \le V_n$ et si $\lim_{n \to +\infty} U_n = +\infty$ Alors $\lim_{n \to +\infty} V_n = +\infty$

*Si à partir d'un certain rang $U_n \le V_n$ et si $\lim_{n \to +\infty} V_n = -\infty$ Alors $\lim_{n \to +\infty} U_n = -\infty$

Attention: Démonstrations exigibles p 22

 $\underline{\textbf{Remarque}}: Si \text{ à partir d'un certain rang } U_n \leq V_n \text{ et si } \lim_{n \to +\infty} U_n = a \text{ et } \lim_{n \to +\infty} V_n = b \quad Alors \ a \leq b$

fiche pratique sur le calcul de limites de suites

Ex1 Limite de suites géométriques

a) Donner la limite de (U_n) où $U_n = 2^n$ $V_n = (\frac{1}{2})^n$; $W_n = (\cos \pi)^n$; $T_n = (-\frac{1}{4})^n + 1$.

b) Donner la limite de $K_n = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}$

Ex2 Avec une racine carrée

Donner la limite de (U_n) où $U_n = \sqrt{n+1}$ - \sqrt{n}

Ex 3 Lever une indétermination

Déterminer la limite en l'infini des suites suivantes

a) $U_n = n^2 - n$

b) $V_n = \frac{2n^2 + 1}{n^2 + n}$

Ex 4 Comparaison

a) $U_n = \frac{\cos n + 1}{n^2 + 2}$

b) $V_n = \sin n + n + 1$

Corrigé

Ex 1 : (U_n) est une suite géométrique dont la raison est 2 càd supérieure à 1 donc la suite diverge vers $+\infty$; 0; pas de limite; 1

Ex2 On utilise la méthode de l'expression conjuguée.

$$U_{n} = \sqrt{(n+1)} - \sqrt{n} = \underbrace{\frac{n+1-n}{\sqrt{(n+1)+\sqrt{n}}}}_{n \to +\infty} = \underbrace{\frac{1}{\sqrt{(n+1)+\sqrt{n}}}}_{n \to +\infty} \underbrace{\lim_{n \to +\infty} U_{n} = 0}$$

Ex 3 Lever une indétermination

Déterminer la limite en l'infini des suites suivantes

c) $U_n = n^2 - n$

Indéterminée ∞ - ∞ . On lève l'indéterminée en factorisant par le terme de plus haut degré $U_n = n^2 \left(1 - \frac{1}{n} \right). \text{ comme } \lim \frac{1}{n} = 0 \text{ lim } \left(1 - \frac{1}{n} \right) = 1$ $Or \quad \lim n^2 = + \infty \text{ donc par produit } \lim U_n = + \infty$

d) $V_n = \frac{2n^2 + 1}{n^2 + n}$

Indéterminée ∞ / ∞ . On lève l'indéterminée en factorisant par le terme de plus haut degré au numérateur et au dénominateur

comme $\lim \frac{1}{n} = 0$ et $\lim \frac{1}{n^2} = 0$ alors $\lim \left(2 + \frac{1}{n^2}\right) = 2$

7

 $V_{n} = \frac{n^{2}(2 + \frac{1}{n^{2}})}{n^{2}(1 + \frac{1}{n})} = \frac{2 + \frac{1}{n^{2}}}{1 + \frac{1}{n}}$ $\lim_{n \to \infty} (1 + \frac{1}{n}) = 1$ et par quotient des limites $\lim_{n \to \infty} V_n = 2$.

Ex 4 Comparaison

a) $U_n = \frac{\cos n + 1}{n^2 + 2}$

b) $V_n = \sin n + n + 1$

corrigés

a) Pour tout entier naturel n, $-1 \le \cos n \le 1$.

On a donc

$$1 - 1 \le 1 + \cos n \le 1 + 1$$
 soit

$$0 \le 1 + \cos n \le 2$$
 soit $0 \le \frac{1 + \cos n}{n^2 + 2} \le \frac{2}{n^2 + 2}$

On veut montrer que f(x) tend vers 0

alors on DOIT DONC UTILISER LE théorème des gendarmes

En effet comme lim $\frac{1}{n^2+2} = 0$

Alors d'après le théorème des gendarmes $\lim U_n = 0$

$$n \rightarrow +\infty$$

Pour tout entier naturel n, $-1 \le \sin n \le 1$.

On a donc

$$n+1-1 \le \sin n + n + 1 \le n+1+1$$
 soit

$$n \leq V_n \leq n+2$$

b) On veut montrer que $\,V_n\,$ tend vers $+\infty$

alors on DOIT DONC UTILISER LE terme qui MINORE V_n

En effet comme $\lim n = +\infty$

$$n \rightarrow +\infty$$

Alors d'après le théorème de comparaison des limites $\lim V_n = +\infty$

$$n \rightarrow +\infty$$