PRIMITIVES

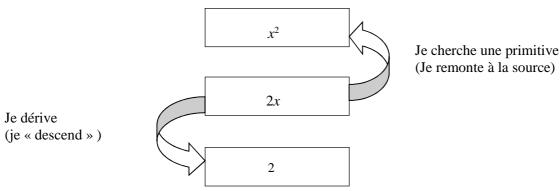
1°) Etude d'un exemple simple

On sait très facilement calculer la dérivée de la fonction f(x)=2x; c'est f'(x)=2.

On veut savoir maintenant ce que l'on va obtenir si on fait le chemin « à l'envers ». En effet je voudrais trouver une fonction F dont la dérivée est f c'est-à-dire que je cherche F telle que F'(x) = 2x.

Ici il est facile de voir que la fonction $F(x) = x^2$ est une solution à notre problème.

On dit que F est une **primitive** de f. On peut symboliser la démarche à l'aide du schéma ci-dessous :



Exercice

Etant donnée une fonction f déterminer une primitive de f c'est- à - dire une fonction F telle que F'(x) = f(x):

a)
$$f(x) = 2$$
 b) $g(x) = 3x^2$ c) $h(x) = 4x^3$.
a) $F(x) = 2x$ b) $G(x) = x^3$ c) $H(x) = x^4$

2°) Définition

Soit f une fonction définie et dérivable sur I. Une fonction F définie sur I est une primitive de f sur I lorsque F est dérivable sur I et que

$$F' = f$$

Exemples:

- f(x)=1 une primitive de f est alors F(x)=x . Vérification : F'(x)=1
- f(x)=x une primitive de f est alors $F(x)=\frac{1}{2}x^2$. Vérification : $F'(x)=2(\frac{1}{2}x)=x$
- $f(x) = \frac{1}{x^2}$ pour x dans $I =]0; + \infty[$ une primitive de f sur I est alors $F(x) = \frac{-1}{x}$. Vérification $F'(x) = \frac{1}{x^2}$

3°) Ensemble des primitives d'une fonction

<u>Observation</u>: si G(x) = C où C est une constante réelle, quelle est sa dérivée g(x)? g(x) = 0.

Donc toute constante réelle C est UNE PRIMITIVE de la fonction nulle.

On en déduit le théorème suivant :

Théorème 1

Soit f une fonction définie et dérivable sur I et F <u>une</u> primitive de f sur I. Les primitives de f sur I sont alors toutes les fonctions définies sur I par $x \mapsto F(x) + C$ où C est une constante réelle.

Exemples: a)Donner les primitives de la fonction $f(x) = 3x^2$; ce sont les fonctions $F: x \mapsto x^3 + C$ où $C \in R$.

b) Donner l'ensemble des primitives de la fonction $f(x) = 4x^3$; c'est l'ensemble des fonctions $F: x \mapsto x^4 + C$ où $C \in R$.

Théorème 2

Soit f une fonction définie et dérivable sur I.

Parmi les primitives de f définies sur I il en existe <u>une et une seule</u> telle que $F(x_0) = y_0$. En particulier la fonction $x \mapsto F(x) - F(a)$ est la seule primitive de f qui s'annule en a.

Exemple: Déterminer la primitive F_0 de la fonction f définie sur R par $f(x) = 3x^2$ telle que $F_0(1) = 0$.

On sait que F_0 s'écrit F_0 (x) = x^3 + C . On va donc déterminer C pour que F_0 (1) = 0

On remplace donc x par 1 et on obtient $F_0(1) = (1)^3 + C = 0$ soit 1 + C = 0. Ce qui donne C = -1.

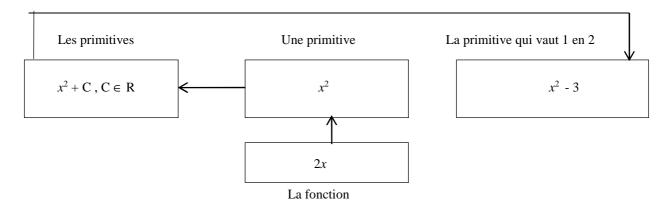
La primitive cherchée est donc $F_0(x) = x^3 - 1$.

Remarque: On fera donc bien la différence entre

<u>une</u> primitive de f (on donne généralement la fonction la plus simple qui répond à la question)

<u>Les</u> primitives de f (c'est la fonction trouvée ci-dessus + C où $C \in R$)

<u>La</u> primitive de f vérifiant une condition (On cherche la constante réelle C pour laquelle la condition est vérifiée)



T	:
Lxe	rcice

Soit f la fonction définie sur R par $f(x) = x^2$, déterminer :

- a) Une primitive de f sur R.
- b) Les primitives de f sur R.
- c) La primitive de f qui vaut 0 en -1.
- a) $F(x) = x^3/3$ b) ce sont les fonctions $F: x \to x^3/3 + C$ où $C \in \mathbb{R}$ c) c'est la fonction $F_0(x) = x^3/3 + 1/3$.

4°) Savoir montrer qu'une fonction donnée F est une primitive sur I d'une fonction f

Soit f une fonction définie et dérivable sur I.

Pour démontrer qu'une fonction F donnée est une primitive de f il suffit de vérifier que F'(x) = f(x) pour tout x de I.

Exemple: Soit f (x) = $x^3 + 3x^2 - 2$. Montrer que la fonction F définie par F (x) = $\frac{1}{4}x^4 + x^3 - 2x + 3$ est une primitive de f sur R.

 $F'(x) = 4(\frac{1}{4}x^3) + 3x^2 - 2 = f(x)$ donc F est une primitive de f sur R.

Exercice : Montrer que la fonction donnée F est une primitive de f sur I

f
$$(x) = \frac{1}{(x-2)^2}$$
 $F(x) = -\frac{1}{x-2}$ $I = [3; 100]$

<u>5°) Primitives des fonctions usuelles par lecture inverse du tableau des dérivées</u>

f	Df	F	DF
0	R	С	R
a		ax + C	
X		$\frac{\frac{1}{2}x^2 + C}{x^3}$	
x^2		$\frac{x^3}{3}$ +C	
x ⁿ		$ \frac{x^{n+1}}{3} + C $ $ \frac{x^{n+1}}{n+1} + C \in \mathbb{N}^* $ $ 1 $	
$ \begin{array}{c} 1 \\ -\frac{1}{x^2} \\ 1 \end{array} $	R*	-— + C	R*
	R*	$ \frac{x}{1} $ $ -\frac{1}{2x^2} + C $ $ -\frac{1}{n-1} \times \frac{1}{x^{n-1}} + C $ n entier naturel $n \ge 2$ $ \sqrt{x} + C$	R*
$ \begin{array}{c} $	R*	$-\frac{1}{n-1} \times \frac{1}{x^{n-1}} + C$ n entier naturel $n \ge 2$	R*
$ \begin{array}{c} 1\\ \hline 2\sqrt{x}\\ 1 \end{array} $	R+*	$\sqrt{x}+$ C	R ⁺
]0 ;+ ∞[$\ln x + C$]0 ;+ ∞[
e^x	R	$e^x + C$	R
cosx		$\sin x + C$	
sinx		$-\cos x + C$	
$1 + \tan^2 x$		$\tan x + C$	

b) Opérations

En s'appuyant sur les résultats concernant les opérations sur les fonctions dérivables, on établit que :

Si F est une primitive de f sur un intervalle I et G est une primitive de g sur un intervalle I alors :

- F + G est une primitive de f + g
- aF est une primitive de af où a est une constante réelle.

Exemples:

1

a) Une primitive de f (x) =
$$x^3$$
 + — sur I = [1;10] est F(x) = $\frac{1}{4}x^4$ + lnx

b) Une primitive de f (x) = $5x^3$ sur R est F(x) = $5(\frac{1}{4}x^4) = \frac{5}{4}$.

c)Conséquences des formules de dérivation

Fonction	Primitive	EXEMPLES: Dans chaque cas calculer les primitives de la fonction donnée sur I.
U'.U	$\frac{1}{2}$ U ² + C	Soit <i>f</i> la fonction définie sur R par $f(x) = 6x^2 (2x^3 + 1)$ F $(x) = \frac{1}{2} (2x^3 + 1)^2 + C$, C dans R
U' . U^n , $n \in N^*$	$\frac{U^{n+1}}{n+1} + C$	Soit f la fonction définie sur R par $f(x) = (2x + 1)(x^2 + x)^2$ 1 $F(x) = \frac{1}{-(x^2 + x)^3} + C, C \text{ dans R}$
U' — U ² (U ≠ 0 sur I)	$ \begin{array}{c} 1 \\ - \overline{} + C \\ U \\ (U \neq 0 \text{ sur I}) \end{array} $	Soit f la fonction définie sur R par $f(x) = \frac{2x}{(x^2 + 1)^2}$ $F(x) = -\frac{1}{x^2 + 1} + C, C \text{ dans R}$
U' U^{n} $(U \neq 0 \text{ sur I})$ $n \text{ entier et } n \geq 2$	$-\frac{1}{n-1} \times \frac{1}{U^{n-1}} + C$ $(U \neq 0 \text{ sur I})$ $n \text{ entier et } n \geq 2$	Soit f la fonction définie sur R par $f(x) = \frac{2x + 3}{(x^2 + 3x + 3)^3}$ $F(x) = -\frac{1}{2(x^2 + 3x + 3)^2} + C, C dans R$
$\frac{U'}{\sqrt{U}}$ (U >0 sur I)	$2\sqrt{U} + C$	Soit f la fonction définie sur R ⁺ par $f(x) = \frac{3x^2}{\sqrt{x^3 + 1}}$ $F(x) = 2\sqrt{x^3 + 1} + C$, C dans R
	ln U + C	Soit f la fonction définie sur R par $f(x) = \frac{2x}{x^2 + 1}$ $F(x) = \ln(x^2 + 1) + C$, C dans R

U'e ^U	e ^U + C	Soit f la fonction définie sur R par $f(x) = 3x^2 e^{x^3}$ $F(x) = e^{x^3} + C$, C dans R
U'cos U	sinU + C	$f(x) = \frac{\cos(\ln x)}{x}$ $F(x) = \sin(\ln x) + C$
U'sinU	-cos U + C	$f(x) = \frac{\sin(\ln x)}{x}$ $F(x) = -\cos(\ln x) + C$

Exemple: Soit f la fonction définie sur R par $f(x) = x(x^2 + 1)$. Donner la primitive de f qui s'annule en 1.

<u>Méthode</u> : d'abord on essaie d'identifier la formule que l'on va utiliser, ici U'U .

Cependant si $U(x) = x^2 + 1$ alors U'(x) = 2x et non x. On va donc « faire apparaître » U'(x).

 $f(x) = \frac{1}{2} \left[2x (x^2 + 1) \right] \quad \text{d'où } F(x) = \frac{1}{2} \left[\frac{1}{2} (x^2 + 1)^2 \right] + C = \frac{1}{4} (x^2 + 1)^2 + C \quad \text{où } C \text{ dans } R. \text{ Comme } F(1) = 0 \text{ on a } C = -1 \text{ et } F(x) = \frac{1}{4} (x^2 + 1)^2 - 1.$

$$f(x) = \sin(ax+b)$$

$$F(x) = -\frac{1}{a}\cos(ax+b) + C$$

$$f(x) = \cos(ax+b)$$

$$F(x) = \frac{1}{a}\sin(ax+b) + C$$

Fonction	Primitive	EXEMPLES: Dans chaque cas calculer les primitives de la fonction donnée sur I.
U'.U	1/2 U ²	Soit f la fonction définie sur R par $f(x) = 6x^2 (2x^3 + 1)$ F $(x) = \frac{1}{2} (2x^5 + 1)^2 + C$, C dans R
U' . U^n , $n \in N^*$	$\frac{U^{n+1}}{n+1}$	Soit f la fonction définie sur R par $f(x) = (2x+1)(x^2+x)^2$ F $(x) = \frac{1}{3}(x^2+x)^3 + C$, C dans R
U' U^{2} $(U \neq 0 \text{ sur I})$	1 - U (U ≠ 0 sur I)	Soit f la fonction définie sur R par $f(x) = \frac{2x}{(x^2 + 1)^2}$ $F(x) = -\frac{1}{x^2 + 1} + C, C \text{ dans R}$
U' U U^{n} $(U \neq 0 \text{ sur I})$ $n \text{ entier et } n \geq 2$	$-\frac{1}{n-1} \times \frac{1}{U^{n-1}}$ $(U \neq 0 \text{ sur I})$ $n \text{ entier et } n \geq 2$	Soit f la fonction définie sur R par $f(x) = \frac{2x + 3}{(x^2 + 3x + 3)^3}$ $F(x) = -\frac{1}{2(x^2 + 3x + 3)^2} + C, C dans R$
		$3x^2$

$\frac{U'}{\sqrt{U}}$ (U >0 sur I)	2√U	Soit f la fonction définie sur R ⁺ par $f(x) = \frac{1}{\sqrt{(x^3 + 1)}}$ $F(x) = 2\sqrt{(x^3 + 1)} + C$, C dans R
	ln U	Soit f la fonction définie sur R ⁺ par $f(x) = \frac{2x}{x^2 + 1}$ $F(x) = \ln(x^2 + 1) + C$, C dans R
U'e ^U	e ^U	Soit f la fonction définie sur R par $f(x) = 2xe^{x^2}$ $F(x) = e^{x^2} + C$, C dans R
U'sinU	-cos U	$f(x) = \sin(ax+b)$ $F(x) = -\frac{1}{a}\cos(ax+b) + C$
U'cos U	sinU	$f(x) = \cos(ax+b)$ $F(x) = \frac{1}{a}\sin(ax+b) + C$