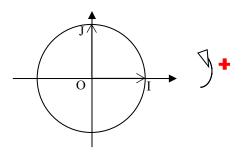
Les fonctions trigonométriques

I) cosinus et sinus d'un nombre réel

Le radian

On appelle par convention sens positif ou direct le sens inverse des aiguilles d'une montre.

On travaille dans le repère $(O, \overrightarrow{OI}, \overrightarrow{OJ})$



Orientation du plan

On dit que le plan est orienté lorsque tous les cercles du plan sont orientés dans le même sens . Dans la suite nous supposerons toujours que le plan est orienté dans le sens positif

Définition

Le cercle trigonométrique C est le cercle de centre O et de rayon 1 orienté positivement.

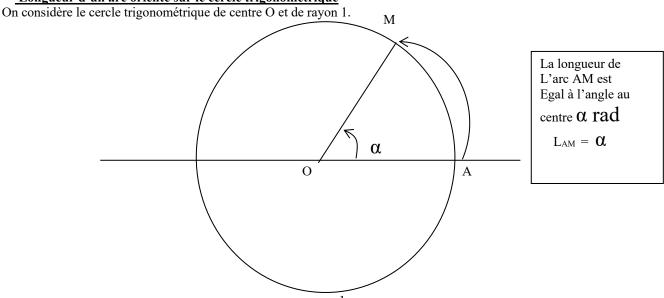
La mesure d'un angle peut – être en degrés mais aussi en radians.

On a la correspondance suivante : π radians correspondent à 180 degrés.

On en déduit le tableau suivant

On en deddit ie tablead survant							
Radians	π	π	π	π	2π	3π	5π
	6	4	3	2	3	4	6
Degrés							

Longueur d'un arc orienté sur le cercle trigonométrique



Enroulement de la droite des réels autour du cercle trigonométrique

Soit x un réel positif et soit M le point d'abscisse x sur l'axe des réels.

Imaginons que l'on enroule la droite des réels autour du cercle trigonométrique comme le montre le schéma ci contre

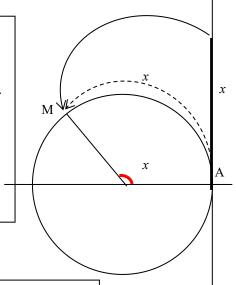
alors

x en longueur sur la droite des réels va devenir x en longueur parcouru sur le cercle.

Or x en longueur sur le cercle correspond à l'angle x radian.

(La même chose peut –être faite pour les réels négatifs.)

On en déduit :



A tout point de la droite des réels d'abscisse x on peut faire correspondre un point M du cercle trigonométrique

tel que l'angle au centre AOM soit égal à x radian.

<u>IMPORTANT</u>: Savoir placer un point M sur le cercle trigonométrique <u>Exemple 1</u>: Placer le point M tel que $(\overrightarrow{OI}, \overrightarrow{OM}) = \frac{22 \pi}{4}$

METHODE: On cherche le réel α dans $[-\pi; \pi[$ et l'entier relatif k tel que $(\overrightarrow{OI}, \overrightarrow{OM}) = \alpha + 2k\pi$

Le dénominateur est 4 donc on cherche des multiples de 4 encadrant « immédiatement » 22.

Pour cela on écrit:

$$20 \le 22 < 24$$

Soit

$$\frac{22\pi}{4} = \frac{20\pi}{4} + \frac{2\pi}{4} = \frac{\pi}{2} + 5\pi \Rightarrow 5$$
 est impaire on n'utilise pas ce multiple.

$$\frac{22\pi}{4} = \frac{24\pi}{4} - \frac{2\pi}{4} = -\frac{\pi}{2} + 6\pi$$
, comme 6 est paire et que $-\frac{\pi}{2}$ dans $[-\pi; \pi[$ Alors on peut placer M .

Exemple 2: Placer le point M tel que $(\overrightarrow{Ol}, \overrightarrow{OM}) = \frac{49 \pi}{3}$ Le dénominateur est 3 donc on cherche des multiples de 3 encadrant « immédiatement » 37.

$$48 \le 49 < 51$$

 $\frac{49\pi}{3} = \frac{48\pi}{3} + \frac{\pi}{3} = \frac{\pi}{3} + 16\pi$ comme 16 est pair et que $\frac{\pi}{3}$ dans $[-\pi; \pi[$

II) Rappels

1°) Fonctions paires sur R

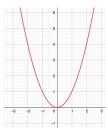
<u>Définition</u> Soit une fonction f définie sur R

La fonction f est paire si pour tout éléments x de R, f(-x) = f(x).

 $\underline{Remarque}: il \ suffit \ d'étudier \ les \ variations \ de \ f \ sur \ [0; \ +\infty[, pour \ avoir \ les \ variations \ sur \ R \ on \ applique \ la \ symétrie.$

<u>Interprétation graphique</u> : Sa courbe représentative admet <u>l'axe des ordonnées</u> comme axe de symétrie.

Exemple: $f(x) = x^2$



2°) Fonctions impaires sur R

Definition

Soit une fonction f définie sur R.

La fonction f est impaire si pour tout éléments x de R, f(-x) = -f(x)

<u>Remarque</u>: il suffit d'étudier les variations de f sur $[0; +\infty[$, pour avoir les variations sur R on applique la symétrie.

<u>Interprétation graphique</u> : Sa courbe représentative admet <u>l'origine du repère</u> comme centre de symétrie.

Exemple: $f(x) = x^3$

3°) Fonctions périodiques

Soit une fonction f définie sur R.

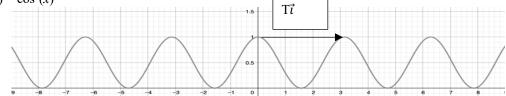
La fonction f est périodique si pour tout réel x,

$$f(x+T)=f(x).$$

<u>Interprétation graphique</u>: Sa courbe représentative est invariante par toute translation de vecteur $nT\vec{\iota}$, avec $n \in \mathbb{N}$ et $\vec{\iota}$ le vecteur dirigeant l'axe des abscisses.

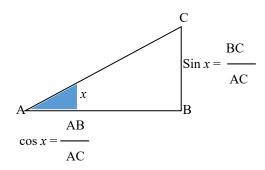
<u>Remarque</u>: il suffit d'étudier f sur un intervalle d'amplitude T, pour avoir les variations sur R on applique les translations.

Exemple: $f(x) = \cos^2(x)$



4°) Définition d'un sinus et d'un cosinus d'un nombre réel

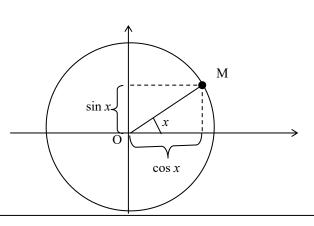
Trigonométrie de base



Donc si AC = 1 $\cos x = AB$ et $\sin x = BC$

On en déduit que pour tout réel x si M est un point du cercle trigonométrique alors

$$\begin{cases} x_{\mathrm{M}} = \cos x \\ y_{\mathrm{M}} = \sin x \end{cases}$$



Propriétés

Pour tout réel x on a les propriétés fondamentales suivantes

$$-1 \le \cos x \le 1$$
 et $-1 \le \sin x \le 1$

$$\cos^2 x + \sin^2 x = 1$$

VOIR LE CERCLE TRIGONOMETRIQUE ET LES VALEURS REMARQUABLES

III)Fonctions cosinus et sinus 1°) Fonction cosinus

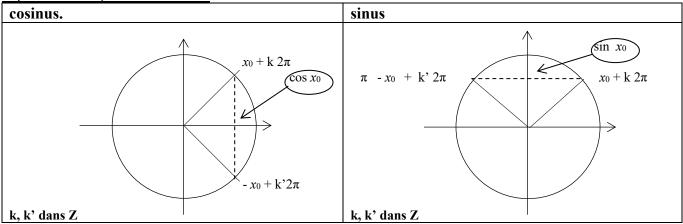
	Fonction cosinus					
PROPRIETES	 cos(x + 2π) = cos x La fonction cosinus est PERIODIQUE de période 2π On peut réduire l'intervalle d'étude à un intervalle d'amplitude 2π. On choisit [-π;π]. cos(-x) = cos x La fonction cosinus est PAIRE. Il suffit donc d'étudier la fonction cosinus sur [0; π]. 					
SIGNE sur [0; π]	$\cos x - \frac{\pi/2}{\pi}$ $\cos x \ge 0 \text{ si } x \in [0; \frac{\pi}{2}]$ $\cos x \le 0 \text{ si } x \in [\frac{\pi}{2}; \pi]$ $\cos x + \frac{\pi}{2}$					
TABLEAU	χ 0 π					
DE VARIATION $(\cos x)' = -\sin x$	cosx					
$(\cos x) = -\sin x$	→ -1					
COURBE	Pour tracer la courbe de la fonction cosinus : On la trace sur [0; π] puis on utilise la symétrie d'axe (Oy) (parité) et la translation de vecteur k2πi, k ds Z.La courbe s'appelle une sinusoïde. 2π τ -5π/2 -2π -3π/2 -π -π/2 0 π/2 π 3π/2 2π 5π/2 -0.5 -1.5					
FONCTIONS Cos(ax +b)	$\cos(a x + b)$ période: $2\pi/a$ $(a\neq 0)$ DERIVEE: $(\cos(ax + b))$ '= $-a\sin(ax + b)$ ex $(\cos(2x))$ ' = $-2\sin 2x$					
LIMITES	$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \text{ (démonstration voir cours sur les dérivées)}$					
PRIMITIVES						
Cos x	$\sin x + C$, C dans R					
$\cos(a x + b)$	$\frac{1}{a}\sin(ax+b) + C, C \text{ dans } R$					

2°) Fonction sinus

	Fonction sinus							
PROPRIETES	• $\sin(x + 2\pi) = \sin x$ La fonction sinus est <u>PERIODIQUE</u> de période 2π .							
	On peut réduire l'intervalle d'étude à un intervalle d'amplitude 2π .On choisit $[-\pi;\pi]$.							
	• $\sin(-x) = -\sin x$ La fonction sinus est <u>IMPAIRE</u>							
SIGNE	Il suffit donc d'étudier la fonction sinus sur $[0;\pi]$.							
sur [0 ; π]	$\pi = \begin{cases} \sin x + \\ 0 & \sin x \ge 0 \text{ si } x \in [0;\pi] \end{cases}$							
TABLEAU DE	x 0 π/2 π							
VARIATION	g:							
$(\sin x)' = \cos x$	$\frac{\sin x}{0}$							
COURBE	Pour tracer la courbe de la fonction sinus : on la trace sur [0; π] puis on utilise la symétrie de centre O (parité) et les translations de vecteurs k2 πi, k ds Z. La courbe s'appelle une sinusoïde.							
FONCTIONS	$2\pi \vec{\imath}$ -0.5 $-2\pi -3\pi/2 - \pi -\pi/2 = 0$ -1 $\sin (ax + b) : période : 2\pi/a (a \neq 0)$							
	DERIVEE: $(\sin(ax + b))$ '= $a\cos(ax + b)$ ex $(\sin(2x))$ ' = $2\cos(2x)$							
LIMITES	$\lim_{x \to 0} \frac{\sin x}{x} = 1$							
PRIMITIVES								
$\sin x$	$-\cos x + C$, C dans R							
$\sin(a x + b)$	$-\frac{1}{a}cos(ax+b)+C$, C dans R							
	1							

III°) Equations et inéquations trigonométriques

1°) Nombres ayant le même ...



2°) THEOREME

COSINUS

$$\cos x = \cos x_0$$

équivaut à

$$x=x_0+k2\pi$$
 , avec $k \in Z$ ou $x=-x_0+k2\pi$, avec $k' \in Z$

SINUS

$$\sin x = \sin x_0$$

équivaut à

$$x=x_0+k2\pi$$
, avec $k \in \mathbb{Z}$ ou $x=\pi-x_0+k2\pi$, avec $k \in \mathbb{Z}$.

3°) Résolution de l'équation du type $\cos x = a$ et de l'équation $\sin x = a$.

a	COSINUS	SINUS		
a >1	Pas de solutions	Pas de solutions		
	x_0 un réel tel que $\cos x_0 = a$. Les solutions de l'équation $\cos x = a$ sont tous les réels x tels que	x_0 un réel tel que $\sin x_0 = a$. Les solutions de l'équation $\sin x = a$ sont tous les réels x tels que		
a ≤ 1	$x = x_0 + \mathbf{k} \ 2\pi \text{ou } x = -x_0 + \mathbf{k}' \ 2\pi$ où $\mathbf{k}, \mathbf{k}' \in \mathbf{Z}$	$x = x_0 + \mathbf{k} \ 2\pi $ ou $x = \pi - x_0 + \mathbf{k}' \ 2\pi$ où $\mathbf{k}, \mathbf{k}' \in \mathbf{Z}$		