EQUATIONS DIFFERENTIELLES

I) Equations du type y = f'(x).

<u>Exemple</u>: on veut résoudre l'équation différentielle suivante $y' = 3x^2$ On cherche donc toutes les fonctions f qui vérifient $f'(x) = 3x^2$. On en déduit les solutions de l'équation donnée **qui sont en fait les primitives sur R** de la fonction carrée càd les fonctions $f: x \to x^3 + C$, C dans R. **f est une solution générale.**

Si de plus on veut que f vérifie une condition donnée dite <u>condition initiale</u>, par exemple f(0) = 1 on a donc $f_0(x) = x^3 + 1$ qui est <u>une solution particulière</u>.

<u>Exercice</u>: Résoudre l'équation différentielle suivante $y' = e^x + x + 1$ où y est une fonction dérivable sur R.

.....

II) Equations du type y' = ay

Définition

Soit a un réel avec $a \ne 0$. On dit qu'une fonction f vérifiant f'(x)= a f(x) est une solution sur R de l'équation différentielle y' = a y.

Ensemble des solutions

Soit a un réel non nul.

L'ensemble des solutions dans R de l'équation différentielle y' = ay est l'ensemble des fonctions f_k définies sur R par $f_k(x) = ke^{ax}$ où $k \in R$

Démonstration p 210

Exemples:

1. y' = 2y les solutions de l'équation différentielle sont les fonctions du type $f_k(x) = ke^{2x}$ où k ds R

2. y' - 5y = 0 les solutions de l'équation différentielle sont les fonctions $f_k(x) = ke^{5x}$ où k ds R

3. y = 4y' les solutions de l'équation différentielle sont les fonctions $f_k(x) = ke^{\frac{1}{4}x}$ où k ds R

4. y' + y = 0 les solutions de l'équation différentielle sont les fonctions $f_k(x) = ke^{-x}$ où k ds R

5. 2y' + 3y = 0 les solutions de l'équation différentielle sont les fonctions $f_k(x) = ke^{-3/2x}$ où k ds R

La solution f de l'équation 3 qui vérifie f(4) = 2 est $x \to 2e^{\frac{1}{4}(x-4)}$ soit $x \to 2e^{0.25x-1}$

III) Equations du type y'=ay + b

Propriété

Soit a et b deux réels non nuls.

L'ensemble des solutions dans R de l'équation différentielle y' = ay + b est l'ensemble des fonctions f_k définies sur R par $f_k(x) = ke^{ax} - \frac{b}{a}$ où $k \in R$

Démonstration p 210

Exemples:

1. y' = 2y + 3 les solutions de l'équation différentielle sont les fonctions du type $f_k(x) = ke^{2x} - \frac{3}{2}k$ ds R

2. y' – 5y = -2 les solutions de l'équation différentielle sont les fonctions $f_k(x) = ke^{5x} + \frac{\bar{z}}{5}$, k ds R

1

IV) Equations du type y' = ay + f

Propriété admise

Soit a un réel non nul et f une fonction définie sur un intervalle I.

Toute solution dans I de l'équation différentielle (E) y' = ay + f est la somme d'une solution quelconque de l'équation y'=ay c'est-à-dire d'une fonction f_k définie sur R par $f_k(x) = ke^{ax}$ où $k \in R$ et d'une solution particulière de l'équation (E).

Exemple : l'équation différentielle $y' = 2y + e^x$ admet pour solution particulière la fonction f définie par $f(x) = -e^x$ puisque $f'(x) = -e^x$ et $2f(x) + e^x = f'(x)$.

Les solutions sont les fonctions $f_k(x) = ke^{2x} - e^x$ où $k \in \mathbb{R}$