CONTROLE BILAN DE MATHS N°3 Trimestre 1 TERMINALE SPECIALITE DUREE 2 H CORRIGE

Exercice 1 (7 pts)

1. En 2023 la population a diminué de 16% puis on a ajouté 1000 individus à la fin de l'année donc :

$$U_1 = (1 - \frac{16}{100}) \times U_0 + 1000 = 0.84 \times 12500 + 1000 = 11500$$

De la même manière on a

$$U_2 = (1 - \frac{16}{100}) \times U_1 + 1000 = 0.84 \times 11500 + 1000 = 10660$$

2. La population de poisson diminue de 16 % chaque année et on réintroduit dans le lac 1000 individus à la fin de chaque année, on a donc pour tout n de N:

$$U_{n+1} = (1 - \frac{16}{100}) \times U_n + 1000$$
 soit $U_{n+1} = 0.84 U_n + 1000$

3. La propriété à démontrer est P_n : 6250 < $U_{n+1} \le U_n$.

Initialisation : pour n=0 on a U_0 = 20 000 et U_1 = 11500 ,or 6250 < 11500 \leq 12500 donc 6250 < $U_1 \leq U_0$ et P_0 est vraie

Hérédité : On suppose que la propriété est vraie **pour un entier n** fixé c'est-à-dire $6250 < U_{n+1} \le U_n$. Notre objectif est de montrer qu'elle reste vraie au rang n+1 c'est-à-dire que $6250 < U_{n+2} \le U_{n+1}$

Par hypothèse de récurrence on a $6250 < U_{n+1} \le U_n$ donc , comme 0,84 >0

$$5250 < 0.84U_{n+1} \le 0.84 U_n$$
 soit encore

$$6250 < 0.9U_{n+1} + 1000 \le 0.9 U_n + 1000$$

Soit finalement $6250 < U_{n+2} \le U_{n+1}$

et la propriété est vraie au rang n+1.

Conclusion : P_n est vraie au rang 0, elle est héréditaire, on a démontré par récurrence que pour tout entier n , 6250 < $U_{n+1} \le U_n$

4. D'après le 3) pour tout n de N $U_{n+1} \le U_n$ et $U_n > 6250$ La suite (U_n) est décroissante et minorée par 6250 donc d'après le théorème de convergence des suites monotones (U_n) converge.

1 u=12500 2 for i in range (1, 14): 3 u = 0.84*u+1000 4 print (u) OU 1 u=12500 2 for i in range (13): 3 u = 0.84*u+1000 4 print (u) **6.** a) Pour tout entier naturel n, $V_n = U_n - 6250$ donc

$$V_{n+1} = U_{n+1} - 6250 = 0.84 U_n + 1000 - 6250 = 0.84 U_n - 5250$$

 $V_{n+1} = 0.84 (U_n - \frac{5250}{0.84})$
 $V_{n+1} = 0.84 (U_n - 6250)$
 $V_{n+1} = 0.84 V_n$

Donc (V_n) est une suite géométrique de raison 0,9 et de premier terme $V_0 = U_0 - 6250 = 6250$.

b) On en déduit que pour tout entier naturel n,

$$V_n$$
= 6250(0,84)ⁿ
Donc , comme $U_n = V_n + 6250$
 U_n =6250 (0,84)ⁿ + 6250
Soit U_n =6250(1+0,84ⁿ)

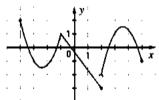
c) $\lim_{n\to+\infty}0.84^n$ = 0 car -1 < 0.84< 1 donc par somme $\lim_{n\to+\infty}1+0.84^n$ = 1 puis par produit $\lim_{n\to+\infty}U_n$ = 6250 .

La population de poissons baissera régulièrement chaque année jusqu'à se stabiliser autour de 6250 individus.

Exercice 2 (6 pts) QCM: Entourer la bonne réponse

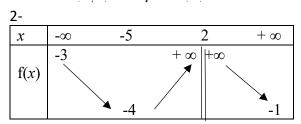
1-

Soit f la fonction définie sur $[-4\ ; 5]$ et \mathscr{C}_f sa courbe donnée ci-dessous.



f est continue sur:

|--|



]-3;+∞[]-4; +∞[[+∞; −3]	[-4; +∞[
---------	----------	----------	----------

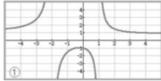
3- Soit f la fonction dont le tableau de variations est donné ci-dessous :

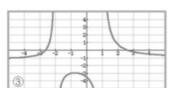
x	-∞	0	4	6
f	0	→ 6 \	▲ -26 <i>─</i>	6

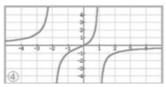
L'équation f(x) = 0 admet :

3	2	1	0
solutions	solutions	solution	solution

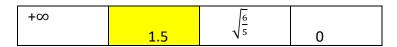
4-Soit f la fonction définie sur R - $\{-2; 2\}$ par $f(x) = \frac{x^2 + 4x + 3}{x^2 + x - 2}$. Déterminer la courbe de f .







5- On considère la fonction $f(x) = \sqrt{\frac{9x^2+6}{4x^2+5}}$. La limite de f en $+\infty$ est égale à :



6- On considère les suites (u_n) et (v_n) telles que, pour tout entier naturel n,

$$u_n = 1 - \left(\frac{1}{4}\right)^n$$
 et $v_n = 1 + \left(\frac{1}{4}\right)^n$.

On considère de plus une suite (w_n) qui, pour tout entier naturel n, vérifie $u_n \le w_n \le v_n$. On peut affirmer que :

- **a.** Les suites (u_n) et (v_n) sont géométriques.
- **b.** La suite (w_n) converge vers 1.
- **c.** La suite (u_n) est minorée par 1.
- **d.** La suite (w_n) est croissante.

Exercice 3 (8 points)

Partie 1

1°)Limites en l'infini

\mathbf{En} - ∞

$$\lim_{x \to -\infty} 2x^3 = -\infty$$

$$\lim_{x \to -\infty} -15x^2 = -\infty$$
Donc par sommes de limites
$$\lim_{x \to +\infty} g(x) = -\infty$$

En $+\infty$

On a une indéterminée du type $+\infty$ - ∞ donc on transforme l'écriture de g(x) et on a :

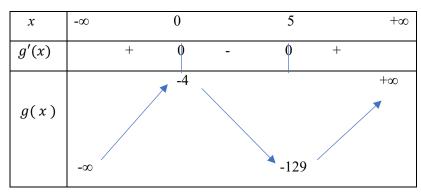
$$g(x) = x^3(2 - \frac{15}{x} - \frac{4}{x^3})$$

Or

$$\lim_{x \to +\infty} -\frac{15}{x} = 0 \text{ et } \lim_{x \to +\infty} -\frac{4}{x^3} = 0 \text{ soit par somme } \lim_{x \to +\infty} 2 - \frac{15}{x} - \frac{4}{x^3} = 2$$
Donc par produit de limites
$$\lim_{x \to +\infty} g(x) = +\infty$$

2°) g est une fonction polynôme, elle est donc dérivable sur \mathbb{R} .

 $g'(x) = 6x^2 - 30x = 6x(x - 5)$. Comme a = 6 D'après la règle du signe du trinôme du second degré on en déduit le signe de g'(x), et le tableau de variation de g sur \mathbb{R} :



3°) D'après le tableau de variation sur] $-\infty$; 5], -4 est le maximum de g atteint en 0 donc g<-4 sur] $-\infty$; 5] c'est-à-dire g<0 sur] $-\infty$;5]. L'équation g(x) = 0 n'admet donc pas de solution sur] $-\infty$;5]

La fonction g est continue et strictement croissante de l'intervalle, $[5; +\infty[$ à valeurs dans l'intervalle $[-129; +\infty[$ qui contient 0, donc d'après le corollaire du théorème des valeurs intermédiaires relatif aux fonctions strictement monotones l'équation g(x) = 0 admet une unique solution α dans $[5; +\infty[$.

On en déduit donc que l'équation g(x) = 0 admet une unique solution α dans \mathbb{R} . Par ailleurs g(7) = -739 et g(8) = 60 donc $g(7) \times g(8) < 0$ et on a bien $7 < \alpha < 8$

4°) Comme d'après la calculatrice g (7,53) \approx -0,597 et que g (7,54) = 0,548 alors g (7,53) x g (7,54) <0 , on en déduit 7,53 < α < 7,54

5°) On en déduit le signe de g sur \mathbb{R} :

x	-∞	α		+∞
g(x)	+	0	-	

Partie B

1°) a) Limite à droite en 5

$En +\infty$

$$\lim_{\substack{x \to 5 \\ x > 5}} x^3 + 4 = 129$$

$$\lim_{\substack{x \to 5 \\ x > 5}} x - 5 = 0^+$$

$$\lim_{\substack{x \to 5 \\ x > 5}} x - 5 = 0^+$$
donc par quotient
$$\lim_{\substack{x \to 5 \\ x > 5}} f(x) = +\infty$$

- b) Graphiquement la droite d'équation x = 5 est asymptote verticale à la courbe C.
- 2°) La fonction f qui est une fonction rationnelle est dérivable sur son ensemble de définition

$$f'(x) = \frac{3x^2(x-5) - (x^3+4)}{(x-5)^2} = \frac{3x^3 - 15x^2 - x^3 - 4}{(x-5)^2} = \frac{2x^3 - 15x^2 - 4}{(x-5)^2} = \frac{g(x)}{(x-5)^2}$$

4.D'après le 3. $f'(x) = \frac{g(x)}{(x-5)^2}$ or $(x-5)^2 > 0$ pour tout x de R^+ on en déduit que

f'(x) est du signe de g(x) sur] 5; $+\infty$ [. On a donc le tableau de variation de f

x	5	α	+∞
f'(x)	-	0 +	
f(x)	+ ∞	170,34	+ ∞