CONTROLE DU 14/12/21 terminale spé CORRIGE

EXERCICE 1

Partie 1

1. <u>Limites en l'infini</u>

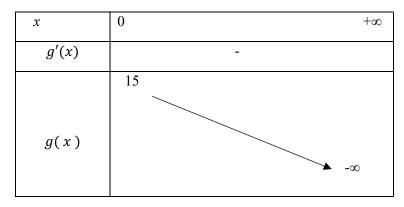
En $+\infty$

$$\lim_{x \to +\infty} -10x^3 = -\infty$$

$$\lim_{x \to +\infty} -6x^2 = -\infty$$
Donc par sommes de limites
$$\lim_{x \to +\infty} g(x) = -\infty$$

2.g est une fonction polynôme, elle est donc dérivable sur \mathbb{R}^+ .

 $g'(x) = -30x^2 - 12x = -6x(5x + 2)$. Comme a = -30 D'après la règle du signe du trinôme du second degré on en déduit le signe de g'(x), et le tableau de variation de g sur \mathbb{R}^+ :



- 3. La fonction g est continue et strictement croissante de l'intervalle, $[0; +\infty[$ à valeurs dans l'intervalle $]-\infty$; 15] qui contient 0, donc d'après le corollaire du théorème des valeurs intermédiaires relatif aux fonctions strictement monotones l'équation g(x) = 0 admet une unique solution α dans $[0; +\infty[$.
- 4. Comme d'après la calculatrice g (0,97) \approx 0,23 et que g (0,98) = -0,17 alors g (0,97)× g (0,98) <0 , on en déduit que 0,97 < α < 0,98
- 5. On en déduit le signe de g sur $[0; +\infty[$

x	0	α	$+\infty$
g(x)	+	0	-

Partie B

1. Limites en l'infini

<u>En +∞</u>

On a une forme indéterminée en $+\infty$ du type $-\infty/\infty$ donc on transforme l'écriture de f(x) et on a :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x(5 + \frac{2}{x})}{x^3(1 + \frac{3}{x^3})} = \lim_{x \to +\infty} \frac{5 + \frac{2}{x}}{x^2(1 + \frac{3}{x^3})}$$
Or
$$\lim_{x \to +\infty} \frac{2}{x} = 0 \text{ soit par somme} \qquad \lim_{x \to +\infty} 5 + \frac{2}{x} = 5$$

$$\lim_{x \to +\infty} \frac{3}{x^3} = 0 \text{ soit par somme} \lim_{x \to +\infty} 1 + \frac{3}{x^3} = 1$$

$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} f(x) = 0$$

2. $\lim_{x \to +\infty} f(x) = 0$ alors l'axe des abscisses d'équation y = 0 est asymptote horizontale à C au voisinage de $+\infty$.

3.La fonction f qui est une fonction rationnelle est dérivable sur son ensemble de définition

$$f'(x) = \frac{5(x^3+3)-(5x+2)3x^2}{(x^3+3)^2} = \frac{5x^3+15-15x^3-6x^2}{(x^3+3)^2} = \frac{-10x^3-6x^2+15}{(x^3+3)^2} = \frac{g(x)}{(x^3+3)^2}$$

4.D'après le 3. $f'(x) = \frac{g(x)}{(x^3+3)^2}$ or $(x^3+3)^2 > 0$ pour tout x de R^+ on en déduit que

f'(x) est du signe de g(x) sur R+. On a donc le tableau de variation de f

x	0 α	+∞
f'(x)	+ 0 -	
f(x)	$\frac{2}{3}$	

Exercice 2

 1°) f est une fonction polynôme, elle est donc dérivable sur I.

 $f'(x) = -3x^2 + 6x = -3x(x-2)$. Comme a = -3 D'après la règle du signe du trinôme du second degré on en déduit le signe de f'(x), et le tableau de variation de f sur I:

x	- ∞	0	2		4
f'(x)	-	0 +	0	-	
f(x)	+ ∞	-1	3		\ -17

<u>Limite en - ∞</u>

$$\lim_{x \to +\infty} -x^3 = +\infty$$
 Puis par somme
$$\lim_{x \to +\infty} 3x^2 = +\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

 2°) Equation de la tangente en x = 1.

$$y = f'(1)(x-1) + f(1)$$

$$y = 3 x - 2$$

$$3^{\circ}$$
) a) $f''(x) = -6x + 6$

on en déduit le signe de f "(x) sur I:

x	- ∞	1	4
f'(x)	+	0 -	

b) Comme $f''(x) \ge 0$ sur $]-\infty$; 1] alors f est convexe sur $]-\infty$; 1]

Comme $f''(x) \le 0$ sur [1;4] alors f est concave sur [1;4]

On en déduit que la courbe de f admet un point d'inflexion sur I qui est le point A(1; 1)

Exercice 3

1°) a) f est une fonction polynôme sur I donc elle est continue sur I.

b)
$$f(x) = x$$
 avec x dans I équivaut à $0.6x(1-x) + 0.35 = x$ soit à $-0.6x^2 - 0.4x + 0.35 = 0$

 $\Delta=1$. On a deux racines distinctes qui sont ½ et -7/6. Donc dans I on a la seule racine acceptable est ½ . $S=\left\{\frac{1}{2}\right\}$

c) f'(x) = -1,2 x + 0,6 on en déduit le tableau de variation de f sur I :

0	1/2
+	0
0.35	1/2
	0 + 0,35

d) D'après le tableau de variation, si x dans I alors

$$0.35 \le f(x) \le \frac{1}{2}$$
 comme $0.35 > 0$

Donc on a bien si x dans I alors f(x) dans I

2°) On considère la propriété Pn : $0 \le U_n \le U_{n+1} \le 0.5$

Initialisation: pour n=0 on a $U_0 = 0$, $U_1 = 0.35$ donc $0 \le U_0 \le U_1 \le 0.5$ et P_0 est vraie

Hérédité: On suppose la propriété vraie **pour un entier naturel n** c'est- à- dire $0 \le U_n \le U_{n+1} \le 0.5$

Notre objectif est de démontrer que Pn+1 est vraie à savoir $0 \le U_{n+1} \le U_{n+2} \le 0.5$ Par hypothèse de récurrence on a donc $0 \le U_n \le U_{n+1} \le 0.5$

Alors d'après le 1)c), comme f est croissante $f(0) \le f(U_n) \le f(U_{n+1}) \le f(0.5)$ et On a finalement D'après le 1)d) $0 \le U_{n+1} \le U_{n+2} \le 0.5$

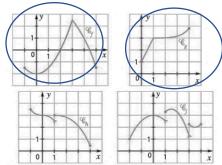
La propriété est donc vraie au rang n+1.

Conclusion: P_n est vraie au rang 0, elle est héréditaire, on a ainsi démontré par récurrence que **pour tout entier naturel n** $0 \le U_n \le U_{n+1} \le 0.5$.

- b) D'après précédemment on sait que (U_n) est croissante puisque **pour tout entier naturel n** $U_n \le U_{n+1}$ et qu'elle est aussi majorée par 0.5 car **pour tout entier naturel n** $U_n \le 0,5$. D'après le théorème de convergence monotone (Un) est donc convergente.
- c) (Un) est donc convergente de limite a et est une suite définie par récurrence par $U_{n+1}=f(\ U_n\)$ avec f qui est une fonction continue. Donc d'après le th du point fixe a est une solution de l'équation a=f(a) avec $a\geq Uo$. D'après le 1b) on a donc a=0.5 donc $\lim_{n\to +\infty} Un=0.5$.

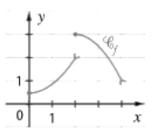
Exercice 4 (4 points)

1) Entourer la (les) courbes de la (des) fonction(s) continue(s) sur leur ensemble de définition :



2)Entourer la réponse juste

f une fonction définie sur l'intervalle [0 ; 4] et dont on donne la représentation graphique dans un repère.



- 1. La fonction f est-elle continue en
- 3? Qui non
- 2. La fonction f est-elle continue en 2?

Oui non

Choisir la ou les bonnes réponses.

Soit f une fonction définie et deux fois dérivable sur [-7; 10]. On donne ci-dessous le tableau de signes de sa fonction dérivée seconde.

x	-7	-1		2		10
f''(x)	_	0	+	0	+	

On note \mathscr{C}_f la courbe représentative de f dans un repère.

- a. f est convexe sur [-1; 2].
- **b.** f est concave sur [-5; 0].
- \sqsubseteq Le point A d'abscisse –1 de \mathscr{C}_f est un point d'inflexion de cette courbe
- **d.** Le point B d'abscisse 2 de \mathscr{C}_f est un point d'inflexion de cette courbe.

Choisir la ou les bonnes réponses.

Soit f une fonction définie sur \mathbb{R} .

1. On sait que, pour tout réel x, $x + 1 \le f(x)$.

On peut déterminer :

- a. $\lim_{x \to a} f(x)$
- b. $\lim_{x\to a} f(x)$
- c. $\lim_{x \to +\infty} f(x)$.
- 2. On sait que, pour tout réel $x, f(x) \le x + 2$.

On peut déterminer :

- $\mathbf{a.} \lim_{x \to -\infty} f(x)$
- b. $\lim_{x\to 0} f(x)$
- c. $\lim_{x\to+\infty} f(x)$.