CONTROLE DE MATHEMATIQUES. TERMINALE SPECIALITE DUREE 2 H

EXERCICE 1 (7 points)

1) Si t = 0, on obtient $x = 2 = x_A$, $y = 3 = y_A$ et $z = 0 = z_A$ dans la représentation paramétrique de d_1 . Donc, le point A appartient à la droite d_1 .

2) Un vecteur directeur de d_1 est $\overrightarrow{u_1}(1,-1,1)$ et un vecteur directeur de d_2 est $\overrightarrow{u_2}(2,1,0)$. Ces deux vecteurs ne sont pas colinéaires et donc les droites d_1 et d_2 ne sont pas parallèles.

3)

$$\overrightarrow{v}.\overrightarrow{u_1} = 1 \times 1 + (-2) \times (-1) + (-3) \times 1 = 1 + 2 - 3 = 0$$

et

$$\overrightarrow{v}.\overrightarrow{u_2} = 1 \times 2 + (-2) \times 1 + (-3) \times 0 = 2 - 2 = 0.$$

Donc, le vecteur \overrightarrow{v} est orthogonal aux vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.

4) a) Soit P' le plan d'équation 5x + 4y - z - 22 = 0. $5x_A + 4y_A - z_A - 22 = 5 \times 2 + 4 \times 3 - 0 - 22 = 0$ et donc le point A appartient au plan P'.

Un vecteur normal au plan P' est le vecteur $\overrightarrow{n}(5,4,-1)$.

$$\overrightarrow{n}.\overrightarrow{u_1} = 5 \times 1 + 4 \times (-1) + (-1) \times 1 = 5 - 4 - 1 = 0$$

 $_{
m et}$

$$\overrightarrow{n} \cdot \overrightarrow{v} = 5 \times 1 + 4 \times (-2) + (-1) \times (-3) = 5 - 8 + 3 = 0.$$

Le vecteur \overrightarrow{n} est orthogonal aux vecteurs $\overrightarrow{u_1}$ et \overrightarrow{v} . En résumé, le plan P' est le plan passant par A et dirigé par les vecteurs $\overrightarrow{u_1}$ et \overrightarrow{v} ou encore P'=P. Ainsi, P est le plan d'équation 5x+4y-z-22=0.

5) a) Δ est la droite de représentation paramétrique $\left\{ \begin{array}{l} x=3+u\\ y=3-2u\\ z=5-3u \end{array} \right.,\ u\in\mathbb{R}.$

b) Soient M(2+t,3-t,t), $t \in \mathbb{R}$, un point de d_1 et N(3+u,3-2u,5-3u), $u \in \mathbb{R}$, un point de Δ .

$$\begin{split} M = N &\Leftrightarrow \left\{ \begin{array}{l} 2+t = 3+u \\ 3-t = 3-2u \\ t = 5-3u \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t = u+1 \\ 3-(u+1) = 3-2u \\ u+1 = 5-3u \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t = u+1 \\ u = 1 \\ u = 1 \end{array} \right. \end{split}$$

$$\Leftrightarrow \left\{ \begin{array}{l} t = 2 \\ u = 1 \end{array} \right.$$

Les droites d_1 et Δ sont donc sécantes en le point de coordonnées (4,1,2).

EXERCICE 2 (7 points)

Dans un aéroport, les portiques de sécurité servent à détecter les objets métalliques que peuvent emporter les voyageurs.

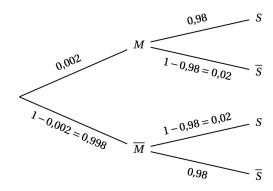
On choisit au hasard un voyageur franchissant un portique.

On note:

- S l'évènement « le voyageur fait sonner le portique »;
- M l'évènement « le voyageur porte un objet métallique ».

On considère qu'un voyageur sur 500 porte sur lui un objet métallique.

- 1. On admet que:
 - Lorsqu'un voyageur franchit le portique avec un objet métallique, la probabilité que le portique sonne est égale à 0,98;
 - Lorsqu'un voyageur franchit le portique sans objet métallique, la probabilité que le portique ne sonne pas est aussi égale à 0,98.
 - **a.** D'après l'énoncé, $P(M) = \frac{1}{500} = 0,002$, $P_M(S) = 0,98$ et $P_{\overline{M}}(\overline{S}) = 0,98$.
 - b. L'arbre pondéré ci-dessous illustre cette situation :



c. D'après la formule des probabilités totales :

D'après la formule des probabilités totales :
$$P(S) = P(S \cap M) + P\left(S \cap \overline{M}\right) = P_M(S) \times P(M) + P_{\overline{M}}(S) \times P\left(\overline{M}\right) = 0,002 \times 0,98 + 0,998 \times 0,02 = 0,02192.$$

d. Par définition :
$$P_S(M) = \frac{P(M \cap S)}{P(S)} = \frac{P_M(S) \times P(M)}{P(S)} = \frac{0,002 \times 0,98}{0,02192} \approx 0,089$$

- 2. 80 personnes s'apprêtent à passer le portique de sécurité. On suppose que pour chaque personne la probabilité que le portique sonne est égale à 0,02192.
 - Soit X la variable aléatoire donnant le nombre de personnes faisant sonner le portique, parmi les 80 personnes de ce groupe.
 - a. On répète de manière identique et indépendante (situation assimilée à un tirage avec remise) 80 fois de suite cette épreuve. Il s'agit d'un schéma de Bernoulli donc la variable aléatoire X suit une loi binomiale de paramètres n = 80 et p = 0.02192.

- **b.** L'espérance d'une loi binomiale est : $E(X) = n \times p = 80 \times 0,02192 = 1,7536$. Donc par groupe de 80 personnes le portail sonnera un peu moins de 2 fois.
- **c.** On donne les valeurs arrondies à 10^{-3} de :
 - la probabilité qu'au moins une personne du groupe fasse sonner le portique : $p(X \ge 1) = 1 p(X < 1) = 1 p(X = 0) = 1 (1 0.02192)^{80} \approx 0.830$.
 - la probabilité qu'au maximum 5 personnes fassent sonner le portique : $p(X \le 5) \approx 0,992$ (à la calculatrice).
- **d.** Avec la calculatrice : $p(X \le 2) \approx 0.744$ et $p(X \le 3) \approx 0.901$. Donc n = 3.

EXERCICE 3 (6 points)

Voir corrigés des exercices faits en classe