NOM:

CONTROLE DE MATHEMATIQUES N°1 TRIMESTRE 2. SPECIALITE. DUREE: 2 Heures

Exercice 1 (5 points)

Soit f la fonction définie sur R par $f(x) = x + 4 - e^x$

- 1°) a) Déterminer la limite de f en ∞ .
- b) Vérifier que pour tout réel x, $f(x) = x \left(1 + \frac{4}{x} \frac{e^x}{x}\right)$ puis déterminer la limite de f en $+\infty$.
- 2°) a) Résoudre dans R l'inéquation $1 e^x \ge 0$.
- b) Calculer f' (x) puis étudier son signe en vous aidant du a).
- c) Dresser le tableau de variations de f sur R.

Exercice 2 (6 points)

Partie A. – On considère la fonction g définie sur]0; $+\infty$ [par $g(x) = 2x^3 - 3x^2 - 6$.

- 1. Déterminer la limite de g en $+\infty$.
- 2. Calculer g'(x) pour tout réel x, étudier son signe et en déduire le tableau de variation de g sur \mathbb{R}^+ .
- 3. Démontrer que l'équation g(x) = 0 admet une unique solution α sur \mathbb{R}^+ .
- 4. Déterminer un encadrement de α d'amplitude 10^{-2} .
- 5. Déterminer le signe de g sur \mathbb{R}^+ .

Partie B. – On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = x^2 - 3x + \frac{6}{x}$ On notera C sa courbe représentative dans un repère orthonormé $(O; \vec{t}, \vec{j})$.

- 1. Déterminer la limite de f à droite en 0.
- 2. Que peut-on en déduire pour *C* ?
- 3. Calculer f'(x) et montrer que $f'(x) = \frac{g(x)}{x^2}$.
- 4. On admet que $\lim_{x \to +\infty} f(x) = +\infty$. Dresser le tableau de variation de f où figurera le signe de f'(x).

Partie C.

- 1. Déterminer une équation de la tangente T à C au point d'abscisse 1.
- 2. **BONUS** ***+2: Après avoir vérifié que $(x-1)^2(x+6) = x^3 + 4x^2 11x + 6$ étudier la position relative de la tangente T et de la courbe C.

Exercice 3(4 points)

Soit f la fonction définie sur $\left[0; \frac{2}{5}\right]$ par $f(x) = 1,6x - x^2 + 0.16$

- 1°) a) Justifier que f est continue sur $\left[0; \frac{2}{5}\right]$
- b) Résoudre l'équation f(x) = x dans $[0; \frac{2}{5}]$.
- c) Calculer f'(x) et donner le tableau de variation de f sur $[0; \frac{2}{5}]$.
- d) A l'aide du tableau de variation en déduire que si $x \in [0; \frac{2}{5}]$ alors $f(x) \in [0; \frac{2}{5}]$
- 2°) On définit la suite (U_n) par $U_0 = 0.2$ $U_{n+1} = f(U_n)$
 - a) Démontrer par récurrence que pour tout entier naturel n, $0 \le U_n \le U_{n+1} \le \frac{2}{5}$
 - b) Montrer que la suite est convergente.
 - c) On appelle α la limite de la suite (U_n). Déterminer α .

Exercice 4 (5 points)

QCM

Entourer la réponse juste :

1- La dérivée de la fonction $f(x) = e^{2+3x^2}$ est

$f'(x) = 2e^{2+3x^2}$	$f'(x) = e^{6x}$	$f'(x) = 6xe^{2+3x^2}$	$f'(x) = e^{2+3x^2}$
-----------------------	------------------	------------------------	----------------------

2- La dérivée de la fonction $f(x) = \ln(3x^2 + 5x + 6)$ est

$$f'(x) = \ln(6x+5)$$

$$f'(x) = \frac{6x+5}{3x^2+5x+6}$$

$$f'(x) = \frac{1}{6x+5}$$

$$f'(x) = (6x+5)\ln x$$

3- Pour tout nombre réel x strictement positif : $\ln(x^2 + x)$

$\ln\left(x^2\right) \times \ln\left(x\right)$	$2\ln\left(x+1\right)$	$\ln(x) + \ln(x+1)$	$2\ln(x) + \ln(x+1)$

4- Le nombre $\ln 125 - \ln 81 - \ln \frac{3}{5} + 2 \ln \sqrt{243}$ est égal à

|--|

5-Le nombre $\frac{e^{ln45-ln27}}{e^{ln15}\times e^{ln81}}$ est égal à

4 ln 5 — ln 3	1 729	$\frac{18}{ln15 \times ln81}$	2025