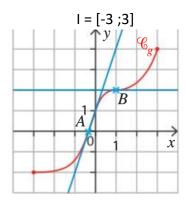
CONTROLE N°1 TRIMESTRE 2 DUREE 40 MN Le 16 /01/2023 SB

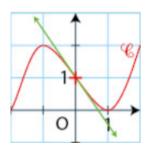
EXERCICE 1 :Dans chaque cas la fonction f dérivable sur I est définie par sa courbe dans un repère. Lire graphiquement les intervalles sur lesquels elle est convexe ou concave.



La courbe est au-dessus de ses tangentes sur $\left[-3;-0.3\right]$

et sur [1;3] donc f est convexe sur [-3;-0.3] et sur [1;3]. La courbe est en-dessous de ses tangentes sur [-0.3;1] donc f est concave sur [-0.3;1]

b) I=[-2;2]

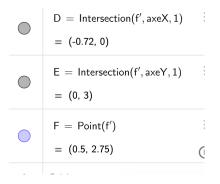


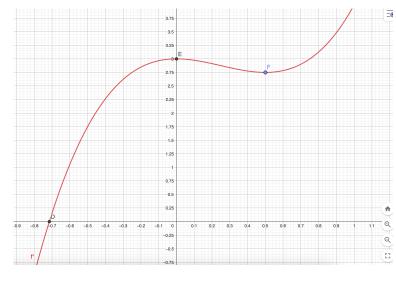
La courbe est au-dessus de ses tangentes sur [0; 2]

donc f est convexe sur [0; 2]. La courbe est en-dessous de ses tangentes sur [-2; 0] donc f est concave sur [-2; 0]

EXERCICE 2: Soit f la fonction définie et dérivable sur R.

On a ci-dessous la courbe de sa fonction dérivée f' grâce à un logiciel.





1

Par lecture graphique on justifiera les réponses aux questions suivantes :

1. Déterminer les variations de f sur R

Comme f'(x)
$$\leq$$
 0 si x \in] - ∞ ; -0.61] alors f est décroissante sur] - ∞ ; -0.61] Comme f'(x) \geq 0 si x \in [-0.61; + ∞ [alors f est croissante sur [-0.61; + ∞ [

2. Déterminer la convexité de *f* sur R.

Comme f' est décroissante sur [0; 0.5] alors f est convexe sur [0; 0.5] .De plus comme f' est croissante sur $]-\infty;0]$ et sur $[0.5;+\infty[$ alors f est convexe sur $]-\infty;0]$ et sur $[0.5;+\infty[$.

3. La courbe de f admet-elle un ou des point(s) d'inflexion ? Déterminer l'abscisse ou les abscisses du ou de ces point(s).

D'après le graphique f' admet deux extrémums locaux en 0 et 0.5 ce qui montre que

f "s'annule en 0 et 0.5 en changeant de signe alors la courbe de f admet 2 points d'inflexions d'abscisses respectives 0 et 0.5.

EXERCICE 3: Soit f la fonction définie sur R par $f(x) = (3x - 4)e^x$ et Cf sa courbe représentative. 1°) Déterminer la limite de f en $+\infty$.

$$\lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x\to+\infty}3x-4=+\infty$$

Donc par produit des limites $\lim_{x \to +\infty} f(x) = +\infty$

2°) a) Après avoir développé l'expression de f(x) déterminer la limite de f en - ∞ .

Comme
$$f(x) = 3x e^x - 4 e^x$$

 $\lim_{x \to -\infty} e^x = 0$ donc par produit $\lim_{x \to -\infty} -4e^x = 0$

 $\lim_{x\to-\infty} x e^x = 0$ par croissance comparée donc par produit $\lim_{x\to-\infty} 3xe^x = 0$

Par somme
$$\lim_{x \to -\infty} f(x) = 0$$

b) Quelle conséquence graphique peut-on en déduire ?

L'axe des abscisses d'équation y =0 est asymptote horizontale au voisinage de +∞

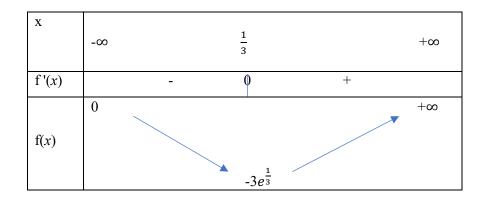
3°) a) On admet que f est deux fois dérivable sur R. Montrer que $f'(x) = (3x - 1)e^x$

$$u(x) = 3x - 4$$
 $u'(x)=3$
 $v(x) = e^x$ $v'(x) = e^x$ $(uv)'=u'v+uv'$

$$f'(x) = 3e^x + (3x - 4)(e^x) = (3x - 1)e^x$$

b) Dresser le tableau de variations de f sur R

Comme $e^x > 0$ pour tout réel x alors f'(x) est du signe de (3x - 1) fonction affine de coefficient directeur 2 positif sur R:



 4°) a) Calculer f "(x).

$$u(x) = 3x - 1$$
 $u'(x)=3$
 $v(x) = e^x$ $v'(x) = e^x$ $(uv)'=u'v+uv'$

$$f''(x) = 3e^x + (3x - 1)(e^x) = (3x + 2)e^x$$

b) Étudier la convexité de f et donner l'(les) abscisse(s) du (ou des) point(s) d'inflexion éventuel(s).

Comme $e^x > 0$ alors f''(x) est du signe de (3x + 2) donc

Comme f "(x)
$$\geq$$
 0 si x $\in \left[-\frac{2}{3}; +\infty\right[$ alors f est convexe sur $\left[-\frac{2}{3}; +\infty\right[$ Comme f "(x) \leq 0 si x \in $\left]-\infty; -\frac{2}{3}\right]$ alors f est concave sur $\left]-\infty; -\frac{2}{3}\right]$

Comme f'' s'annule en changeant de signe en $-\frac{2}{3}$, la courbe de f admet donc un point d'inflexion au point d'abscisse $-\frac{2}{3}$ de coordonnées $(-\frac{2}{3}; -6e^{-\frac{2}{3}})$.

 5°) a) Calculer **la valeur exacte** de f(1) et de f'(1)

$$f(1) = -e \ et \ f'(1) = 2e$$

b) Déterminer une équation de la tangente T au point d'abscisse 1

T:
$$y = f'(1)(x-1) + f(1)$$

T: $y = 2e(x-1) - e$
T: $y = 2ex - 3e$

6°) A l'aide du 4°)b) étudier la position relative de Cf et T.

Comme f est convexe sur $\left[-\frac{2}{3}; +\infty\right[$ alors la courbe Cf est au-dessus de ses tangentes sur $\left[-\frac{2}{3}; +\infty\right[$ donc la courbe Cf est au-dessus de T tangente au point d'abscisse 1.