DERIVATION

I) Dérivée d'une fonction

f désigne une fonction définie et dérivable sur un intervalle I .

1°) Formulaires des fonctions usuelles

Ce tableau doit être connu parfaitement. ♥

Ce tableau doit etre connu parfaite	Df	f	Df'
a	R	0	R
a	K	O	K
ax+b		a	
		u	
x^2		2x	
x^3		$3x^2$	
$x^n \in \mathbb{N}^*$		nx^{n-1}	
1		1	
_	R*		R*
x		x^2	
x 1		2	
	R*	- —	R*
x^2		x^3	
$ \begin{array}{c} \overline{x^2} \\ 1 \\ \overline{x^3} \\ 1 \end{array} $		$ \begin{array}{c} -\frac{1}{x^2} \\ 2 \\ -\frac{1}{x^3} \\ 3 \\ -\frac{1}{x^4} \end{array} $	
_	R*	- —	R*
x^3		x^4	
		n	
$\frac{-}{x^n}$ $n \in \mathbb{N}^*$	R*		R*
$\chi^{\rm n}$		x ⁿ⁺¹ 1	
,		1	. *
\sqrt{x}	$R^+ = [0; +\infty[$		$R^{+*}=]0; +\infty[$
		$2\sqrt{x}$	
	_	_	_
cosx	R	-sinx	R
. •	D		D
sinx	R	cosx	$R \\ R \setminus \{ (2k+1)\pi/2 ; k \text{ ds } Z \}$
400.00	$\mathbb{R}\setminus\{(2k+1)\pi/2; k \text{ ds } \mathbb{Z}\}$	1 . 4 2	$\mathbb{R}\setminus\{(2\mathbb{K}+1)\mathbb{N}/2;\mathbb{K}\text{ us }Z\}$
tan x	(() , , ,	$1 + \tan^2 x$ -1]-1 ;1[
Arccos x	[-1;1]	-1	J 1 ,1[
AICCOS x		$\sqrt{(1-x^2)}$	
		$\begin{pmatrix} 1 - \lambda \end{pmatrix}$]-1;1[
Arcsin x	[-1;1]		, , ,
I Heshi A		$\sqrt{(1-x^2)}$	
		1	R
Arctan x	R		
		$x^2 + 1$	
	de .	1	R*
lnx	$R^{*_{+}}$	<u> </u>	
		x	
	ъ		ъ
e^x	R	e^x	R
x^{α} où $\alpha > 0$	R^{*_+}	$\alpha x^{\alpha-1}$	R^{*_+}
Fonctions puissances			
a ^x avec a>0	R	(lna)a ^x	R
Fonctions exponentielles de base a			

Remarque : si p \in Z* (avec si $x \in$ R* si p \le -1) alors nous avons la formule générale résumant les formules 1 et 2 (x^p)'= px^{p-1} par exemple pour tout x de R* $\frac{1}{x^4} = x^{-4}$ d'où (x^{-4})'= -4 $x^{-4-1} = -4x^{-5} = \frac{-4}{x^5}$

Exemples:

f(x)=
$$x^4$$
 alors f'(x)= $4x^3$; pour tout x de R* si $f(x)=\frac{1}{x^3}$ alors f'(x)= $\frac{3}{x^4}$.

2°) Opérations sur les fonctions dérivables :rappel des formules usuelles complément sur la dérivation.

Dans ce paragraphe les fonctions u et v sont deux fonctions dérivables sur un intervalle I.

Ψ	
OPERATIONS	EXEMPLES : Dans chaque cas calculer la dérivée de la fonction donnée sur I.
Somme	Soit f la fonction définie sur [1;18] par $f(x) = x^3 + \frac{1}{x^3 + x^3}$
(U + V)' = U' + V'	$f'(x)=3x^2-\frac{1}{x^2}$
Produit par un réel	Soit f la fonction définie sur R par $f(x) = 5 x^6$
(aU)'=aU'	$f'(x)=30 x^5$
Produit	Soit f la fonction définie sur R par $f(x) = (x^6 + x) (2x^5 + 1)$
(UV)'=U'V+UV'	$f'(x)=22 \ x^{10}+18 \ x^5+1$
Carré	Soit f la fonction définie sur R par $f(x) = (x^4 + x^3 - 5)^2$
$(U^2)' = 2U'.U$	$f'(x) = 2.(4x^3 + 3x^2)(x^4 + x^3 - 5) = 2x^2(4x^3 + 3)(x^4 + x^3 - 5)$
Puissance entière	Soit f la fonction définie sur R par $f(x) = (x^2 + 3x + 4)^3$
$(U^n)' = n \ U' \cdot U^{n-1}$	$f'(x) = 3.(2x + 3)(x^2 + 3x + 4)^2$
Où n≥1, n entier naturel	
Inverse $(U \neq 0 \text{ sur I})$ $1 \qquad U'$	Soit f la fonction définie sur R par $f(x) = \frac{1}{x^2 + 1}$
$(\frac{1}{U})' = -\frac{U'}{U^2}$	$f'(x) = -\frac{2x}{(x^2 + 1)^2}$
$(\underbrace{-}_{U^n})' = -n \frac{U'}{U^{n+1}}$	Soit f la fonction définie sur R par $f(x) = \frac{1}{(x^2 + x + 1)^3}$ 3. $(2x + 1)$
où $U \neq 0$ sur I et n entier naturel	$f'(x) = -\frac{1}{(x^2 + x + 1)^4}$
Quotient($V \neq 0$ sur I)	3x+1
U U'V – UV' (—)' = ———	Soit f la fonction définie sur R par $f(x) = \frac{1}{x^2 + 2}$
$\left(\frac{1}{V}\right)^2 = \frac{1}{V^2}$	$f'(x) = \frac{-3x^2 - 2x + 6}{(x^2 + 2)^2}$
	$(x^2 + 2)^2$

Racine carrée(U>0 sur I)	Soit f la fonction définie sur [3 ; 10] par $f(x) = \sqrt{x^2 - x - 2}$
$ \sqrt{U} = \frac{U'}{2\sqrt{U}} $	$f'(x) = \frac{2x - 1}{2\sqrt{(x^2 - x - 2)}}$
Soit U une fonction dérivable sur I avec U>0 sur I	Soit f la fonction définie sur R par $f(x) = \ln(x^2 + 2)$
(lnU)'= U' U	$f'(x) = \frac{2x}{x^2 + 2}$
	Soit f la fonction définie sur R par $f(x) = \exp(x^2 + 2)$
(e ^U)'= U'e ^U	$f'(x) = 2x \exp(x^2 + 2)$

II)Interprétation graphique du nombre dérivé : tangente à une courbe .

1°) Equation de droite et coefficient directeur d'une droite

a) Droite sécante à l'axe des ordonnées

Exemple: Soit D la droite d'équation $y \neq 2$

on y = 2 x + 3 .

 ${f 2}$ est le ${f coefficient\ directeur}$ de la droite D. (On dit aussi la pente de la droite D) On peut le lire graphiquement .

3 est l'ordonnée du point d'intersection de D avec l'axe (Oy).

Attention à l'unité

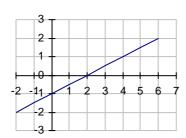
Cas général : Une droite sécante à l'axe des ordonnées a une équation de la forme $\mathbf{y} = \mathbf{m} \ x + \mathbf{p}$ où

m est le coefficient directeur de la droite et où

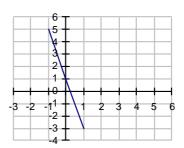
p est l'ordonnée à du point d'intersection de D avec l'axe (Oy).

Remarque:

Lorsque m est POSITIF la droite « monte vers les y positifs »



Lorsque m est NEGATIF la droite « descend vers les y négatifs »



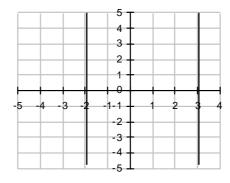
Si m est NUL la droite est PARALLELE A L'AXE DES ABSCISSES ou HORIZONTALE.

b) Droite parallèle à l'axe des ordonnées

Une droite parallèle à l'axe des ordonnées (ou verticale) a une équation de la forme x = c.

Exemples:

$$x = -2$$



x = 3

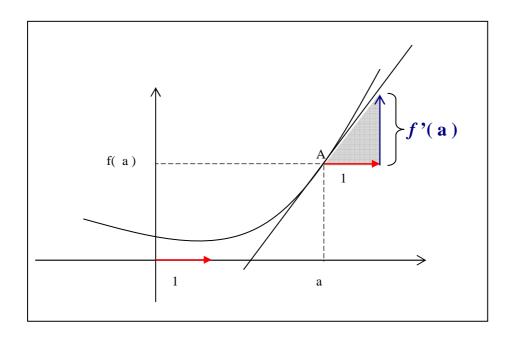
Remarque: ATTENTION elle n'a pas de coefficient directeur!

2°) Tangente à une courbe et nombre dérivé

Soit f une fonction dérivable sur un intervalle I et a un élément de I.C est la courbe de f dans un repère (O; i, j). Si f' est la fonction dérivée de f sur I alors le nombre dérivé de f en a est f'(a) et

Le coefficient directeur de la tangente à C

au point d'abscisse a est



Conséquence

Une équation de la tangente à C en au point A d'abscisse a c'est - à - dire au point de coordonnées (a; f(a))

est

$$y = f'(a) \cdot (x - a) + f(a)$$

Exercices

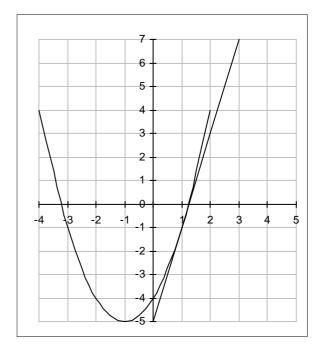
Exemple

- 1°) Représenter graphiquement la fonction f définie sur [-4; 2] par $f(x) = x^2 + 2x 4$. On note C la courbe obtenue.
- 2°) Calculer la dérivée f' de f.
- 3°) Montrer qu'une équation de la tangente T à C au point d'abscisse 1 est y=4x-5 .
- 4°) Tracer T.
- 1°)
- 2°) f'(x) = 2x + 2
- 3°) Equation de la tangente T au point d'abscisse 1 :

$$y = f'(1)(x - 1) + f(1)$$

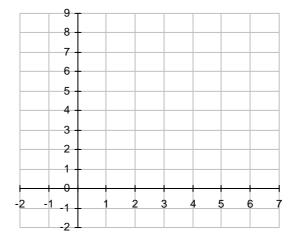
soit
$$y = 4(x - 1) - 1$$

Soit encore y = 4x - 5



Exercice 1

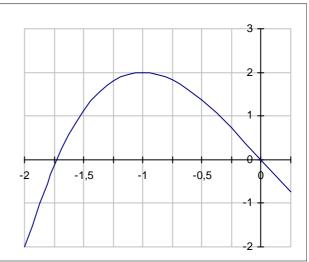
- 1°) Représenter graphiquement la fonction f définie sur [-2;
- 4] par $f(x) = x^2 2x$. On note C la courbe obtenue.
- 2°) Calculer la dérivée f' de f.
- $3^{\circ})$ Déterminer une équation de la tangente T à C au point d'abscisse 2.
- 4°) Tracer T.



Exercice 2

Soit f la fonction définie sur [-2; $\frac{1}{4}$] par $f(x) = x^3 - 3x$ dont la courbe C est donnée ci-contre.

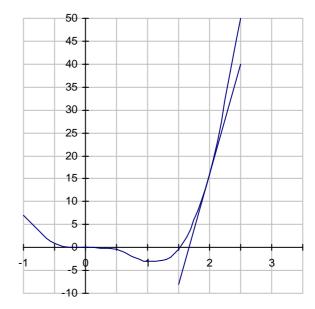
- 1°) Tracer la tangente à C au point d'abscisse -1.
- 2°) Donner une équation de la tangente à C au point O.



Remarque: Une équation de la tangente au point O ,origine du repère , s'écrit y = f'(0)x + f(0)Exercice 3

Soit f la fonction définie sur [-2;2] dont la courbe C est donnée ci-contre.

- 1°) Déterminer le nombre dérivé de f en 2.
- 2°) Donner une équation de la tangente à C au point d'abscisse .



III) Signe de la dérivée et sens de variation.

1°) Théorème fondamental f est une fonction définie et dérivable sur un intervalle I.

VARIATIONS	COURBE	TABLEAU
Si f'≥0 sur I Alors f est croissante sur I.	la courbe monte : f ' ≥ 0	$ \begin{array}{c cccc} x & a & b \\ \hline f'(x) & + \\ \hline f(x) & f(b) \end{array} $
Si f'≤0 sur I alors f est décroissante sur I.	la courbe descend : f ' ≤ 0 a b	$ \begin{array}{c cccc} x & a & b \\ \hline f'(x) & - \\ \hline f(a) & \\ f(b) & \\ \end{array} $
Si f '= 0 sur I alors f est constante sur I. 2°) Application à l'átude des verieties	La courbe est horizontale :f '=0 a b	$ \begin{array}{c cccc} x & a & b \\ \hline f(x) & f(a) & $

2°) Application à l'étude des variations d'une fonction

a) Exemple 1: On veut étudier les variations de la fonction f définie sur [-10; 10] par $f(x) = x^3 - x^2 - x + 3$ Pour cela on calcule la dérivée f'de f et on étudie le signe de f' sur R : f'(x)= $3x^2 - 2x - 1$. D'après la règle sur le signe du trinôme on a donc le signe de f'(x) et le tableau de variation de f:

umome	on a doi	ic ie sigi	ie de i	(x) et le tat
x	-10	- 1/3	1	10
f'(x)	+	0	- 0	+
		86/27		893
	1	1		7
f(x)		·	71	
-()	-1087		2	

<u>Remarque</u>: dans le tableau de variation on ne met (sauf précisions contraires du texte) que des <u>valeurs EXACTES</u>!

par
$$g(x) = x + 1 + \frac{1}{x - 1}$$

c) Exemple 3: Etudier les variations de la fonction h définie par
$$h(x) = \frac{x^2 + x + 4}{x^2 + 1}$$
 sur R

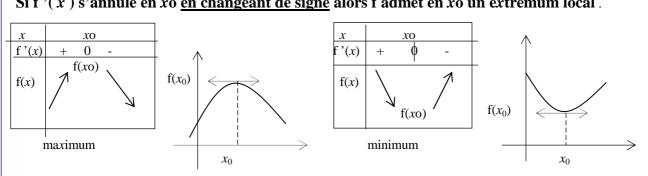
IV) Dérivation et applications

1°) Extrémum local

Théorème

Soit f une fonction dérivable sur un intervalle ouvert] a , b[et $xo \in$]a , b[.

Si f'(x) s'annule en x0 en changeant de signe alors f admet en x0 un extrémum local.



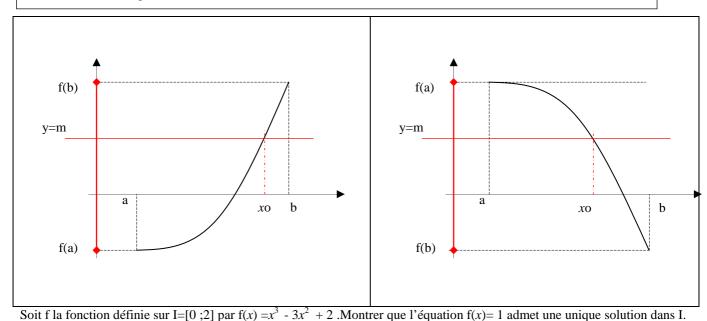
Remarque: en un extremum local la tangente est **horizontale**.

<u>Contre - exemple</u>: <u>Attention</u> si f'(x) s'annule sans changer de signe alors il n'y a pas d'extremum. Considérons la fonction $f(x) = x^3$ sur [-2, 2]; on a bien f'(0) = 0 cependant comme $f'(x) = 3x^2$ ne change pas de signe sur [-2;2] (f'(x) \geq 0) il n'y a pas d'extremum en 0.

2°) Résolution d'équations du type f(x) = m.

Théorème

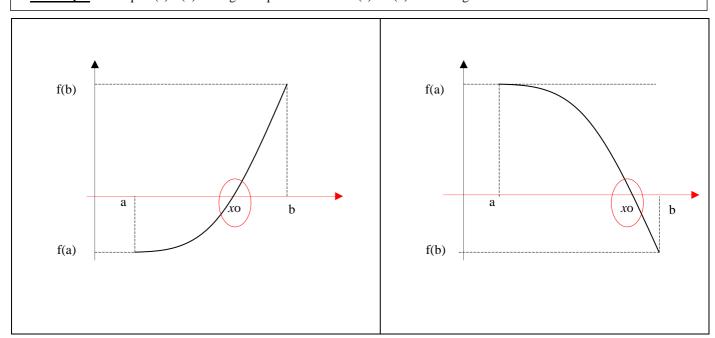
- 1. Soit f une fonction dérivable sur [a ;b] telle que f' > 0 sur]a ;b[alors pour tout réel m de [f(a) ; f (b)] l'équation f(x)=m admet une unique solution x0 dans [a ;b] .
- 2. Soit f une fonction dérivable sur [a ;b] telle que f ' < 0 sur]a ;b[alors pour tout réel m de [f(b) ; f (a)] l'équation f(x)=m admet une unique solution x0 dans [a ;b].



Conséquence

Soit f une fonction dérivable sur [a ;b]. Si f' > 0 (ou f' < 0) sur]a ;b[et si $f(a) \times f(b) < 0$ alors l'équation f(x)=0 admet une unique solution x0 dans [a ;b].

Remarque: Dire que $f(a) \times f(b) < 0$ signifie que les nombres f(a) et f(b) sont de signes contraires

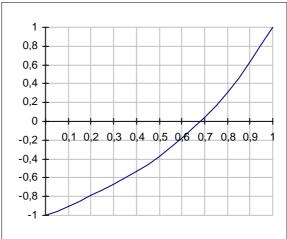


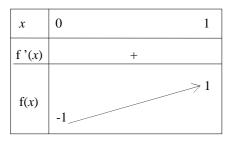
Problème...

Soit f la fonction polynôme définie sur I=[0;1] par $f(x)=x^3+x-1$. Ce polynôme n'admet pas de racines évidentes dans I, on va donc essayer de trouver la solution de f(x)=0 à l'aide d'une autre méthode.

Sur la courbe ci-contre on voit que l'équation f(x)=0 admet bien une solution dans I. Grâce au théorème suivant nous allons le démontrer **Résolution du problème**.

Dans un premier temps on va donc démontrer l'existence de la solution. Pour cela on étudie les variations de f sur [0;1]. f' $(x)=3x^2+1$ donc f'(x)>0 sur I . Le tableau de variation est donc :





Comme f' > 0 sur]0;1[et comme $f(0)\times f(1) = -1$ c'est- à - dire $f(0)\times f(1) < 0$ alors l'équation f(x)=0 admet une unique solution x0 dans [0;1].

Maintenant que l'on a démontré l'existence et l'unicité de la solution de l'équation f(x)=0 on va donné à l'aide de la calculatrice un encadrement de cette solution à 10^{-2} près. En effet on a :

On va diviser l'intervalle I en 10 intervalles de longueur 0.1, on dit que l'on effectue un balayage avec un pas de 0.1. On obtiendra alors une valeur approchée de xo à 10^{-1} près :

х	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
f(x)	-1	-0.9	-0.8	-0.7	-0.5	-0.4	-0.2	0.05	0.3	0.6

On constate que $f(0.6) \times f(0.7) < 0$ donc d'après le théorème $0.6 < x_0 < 0.7$ On recommence la même opération avec l'intervalle [0.6;0.7] et on obtient d'après le théorème ,

qui est l'encadrement à 10^{-2} de x_0 .

puisque f(0.68)≈-0.006 et que f(0.69))≈0.02 c'est - à - dire f(0.68)×f(0.69) < 0 , que **0.68** <
$$x$$
0 < **0.69** .

EXEMPLE:

Résoudre dans [1;2] l'équation $x^3 - 2x - 1 = 0$. (On considère la fonction $f(x) = x^3 - 2x - 1$ et on étudie les variations de f dans [1;2])

Notion de fonction réciproque

Soit f une dérivable et strictement monotone sur un intervalle I quelconque. Posons J = f (I). J est un intervalle; Alors :

- Pour tout réel x dans I, f(x) est dans J
- Pour tout réel y dans J, il existe un unique x tel que f (x) =y.

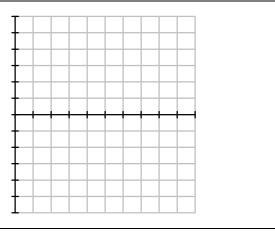
Lorsque ces deux conditions sont réunies ,on dit que f est une bijection de I sur J.On peut alors définir une fonction g Sur J de la façon suivante :

Si $y \in J$ et si y = f(x) alors g(y) = x. On dit que g est la bijection ou fonction réciproque de f.

Il en résulte que pour tout réel x de I g(f(x)) = x et pour tout y dans J f(g(y)) = y.

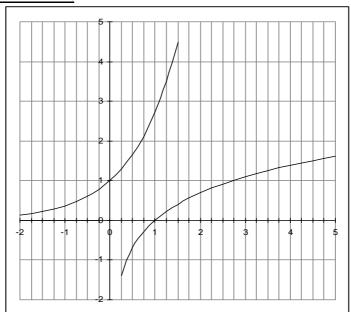
Exemple:

I = $[0; +\infty[$. $f(x) = x^2$. Déterminer la fonction g Construire leurs courbes respectives, qu'observez – vous?.



EXEMPLES DE BIJECTIONS ET DE LEURS BIJECTIONS RECIPROQUES

FONCTION EXPONENTIELLE ET LN



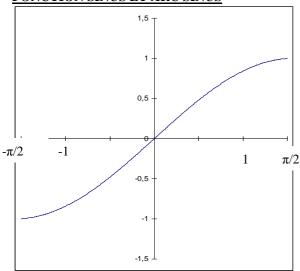
Propriété

La fonction exponentielle, notée exp, est la fonction définie sur R à valeur dans]0 ; + ∞ [par :

$$\exp : \mathbb{R} \to]0$$
; $+ \infty [$
 $x \to e^x$ où $y = e^x$ équivaut à $\ln y = x$

La fonction exp est la fonction réciproque de la fonction ln

FONCTION SINUS ET ARC SINUS



La fonction sinus est une bijection croissante de $[-\pi/2;\pi/2]$ dans [-1;1].

Rappels:

$$\sin(x + 2\pi) = \sin x$$

$$\sin(-x) = -\sin x$$

$$(\sin x)' = \cos x$$

Définition

La fonction réciproque de la fonction sinus restreinte à l'intervalle de définition $[-\pi/2, \pi/2]$ est appelée arc sinus. On la note Arcsin ou sin⁻¹ et elle est ainsi définie :

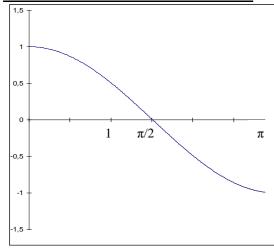
$$[-1;1] \rightarrow [-\pi/2;\pi/2]$$

$$x \rightarrow y = Arcsin x$$
 équivaut à $sin y = x$

DERIVEE: (Arcsin x)' =
$$\frac{1}{\sqrt{1-x^2}}$$

Exemple: Arcsin ($\frac{1}{2}$) = $\pi/6$

FONCTION COSINUS ET ARC COSINUS



La fonction sinus est une bijection croissante de $[0;\pi]$ dans [-1;1].

Rappels:

$$\cos(x+2\pi) = \cos x$$

$$\cos(-x) = \cos x$$

$$(\cos x)' = -\sin x$$

Définition

La fonction réciproque de la fonction cosinus restreinte à l'intervalle de définition $[0;\pi]$ est appelée arc cosinus. On la note Arccos ou \cos^{-1} et elle est ainsi définie :

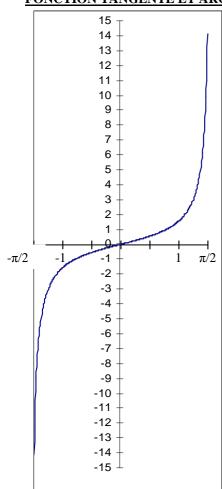
$$[-1;1] \to [0;\pi]$$

$$x \rightarrow y = \operatorname{Arccos} x$$
 équivaut à $\cos y = x$

<u>DERIVEE</u>: (Arcsin x)' = $\frac{1}{\sqrt{1-x^2}}$

Exemple: Arccos
$$x (-\frac{1}{2}) = 2\pi/3$$

FONCTION TANGENTE ET ARC TANGENTE



La fonction tangente est une bijection croissante de]- $\pi/2$; $\pi/2$ [dans R.

Rappels:

$$\tan (x + \pi) = \tan x$$

$$\tan(-x) = -\tan x$$

$$(\tan x)' = 1 + \tan^2 x$$

Définition

La fonction réciproque de la fonction tangente restreinte à l'intervalle de définition]- $\pi/2$; $\pi/2$ [est appelée arc tangente.

On la note Arctan ou tan-1 et elle est ainsi définie :

]-
$$\pi/2$$
; $\pi/2$ [\rightarrow R \rightarrow y = Arctan x équivaut à tan y = x

DERIVEE: (Arctan x)' =
$$\frac{1}{1+x^2}$$
 Exemple: Arctan x (-1) = - π /4

Rappel: Tableau de valeurs avec les angles remarquables

X	0	π/6	$\pi/4$	$\pi/3$	$\pi/2$	π
sin x	0	1/2	$\sqrt{2}$	$\sqrt{3/2}$	1	0
cos x	1	$\sqrt{3/2}$	$\sqrt{2}$	1/2	0	-1
$ tan x = \frac{\sin x}{\cos x} $	0	√3/3	1	√3	X	0